\(\dfrac{1}{2\left(x^2+y^2\right)}+\dfrac{4}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2018

\(P=\dfrac{1}{2\left(x^2+y^2\right)}+\dfrac{4}{xy}+2xy\)

\(\Leftrightarrow2P=\dfrac{1}{x^2+y^2}+\dfrac{8}{xy}+4xy\)

\(\Leftrightarrow2P=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{29}{4xy}\)

Áp dụng BĐT AM - GM , ta có :

\(\Leftrightarrow\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{29}{4xy}\ge\dfrac{2}{\sqrt{\left(x^2+y^2\right)2xy}}+2\sqrt{\dfrac{1}{4xy}.4xy}+\dfrac{29}{4xy}\)

\(\Leftrightarrow2P\ge\)\(\dfrac{2}{\sqrt{\left(x^2+y^2\right)2xy}}+2+\dfrac{29}{4xy}\ge\dfrac{4}{\left(x+y\right)^2}+2+\dfrac{29}{\left(x+y\right)^2}\)

\(\Leftrightarrow2P\ge2+4+29=35\)

\(\Leftrightarrow P\ge\dfrac{35}{2}\)

\(\Rightarrow P_{Min}=\dfrac{35}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)

5 tháng 9 2017

\(\left\{{}\begin{matrix}x>y\\xy< 0\end{matrix}\right.\)\(\Rightarrow x>0>y\)

Đặt \(y=-z\left(z>0\right)\) thì ta có:

\(P=\left(x+z\right)^2+\left(x+z+\dfrac{1}{x}+\dfrac{1}{z}\right)^2\)

\(\ge\left(x+z\right)^2+\left(x+z+\dfrac{4}{x+z}\right)^2\)

Đặt \(x+z=a\) thì ta có:

\(P\ge a^2+\left(a+\dfrac{4}{a}\right)^2=2a^2+\dfrac{16}{a^2}+8\)

\(\ge8+2\sqrt{2a^2.\dfrac{16}{a^2}}=8+8\sqrt{2}\)

Dấu = xảy ra khi: \(\left\{{}\begin{matrix}x=z\\2a^2=\dfrac{16}{a^2}\end{matrix}\right.\)

\(\Rightarrow x=z=\dfrac{1}{\sqrt[4]{2}}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{\sqrt[4]{2}}\\y=-\dfrac{1}{\sqrt[4]{2}}\end{matrix}\right.\)

3 tháng 11 2018

\(Q=\dfrac{xyz}{z^3\left(x+y\right)}+\dfrac{xyz}{x^3\left(y+z\right)}+\dfrac{xyz}{y^3\left(x+z\right)}\)

\(=\dfrac{1}{z^3\left(x+y\right)}+\dfrac{1}{y^3\left(x+z\right)}+\dfrac{1}{x^3\left(y+z\right)}\) (vì xyz = 1)

\(=\dfrac{\left(\dfrac{1}{z}\right)^2}{z\left(x+y\right)}+\dfrac{\left(\dfrac{1}{y}\right)^2}{y\left(x+z\right)}+\dfrac{\left(\dfrac{1}{x}\right)^2}{x\left(y+z\right)}\)

Áp dụng BĐT cauchy schwarz với x,y,z > 0 ta có:

\(Q\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}{2\left(xy+yz+xz\right)}=\dfrac{\left(xy+yz+xz\right)^2}{2\left(xy+yz+xz\right)}=\dfrac{xy+yz+xz}{2}\)Mặt khác theo BĐT cauchy với x;y;z>0 thì

\(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}=3\)

Vậy MinQ = \(\dfrac{3}{2}\Leftrightarrow x=y=z=1\)

30 tháng 5 2019

Bạn bik lm chưa chỉ mik bài 1 vs nhaok

NV
30 tháng 5 2019

\(S=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)

\(S\ge\frac{4\left(x+y\right)^2}{x^2+y^2+2xy}+\frac{\left(x+y\right)^2}{\frac{\left(x+y\right)^2}{2}}=\frac{4\left(x+y\right)^2}{\left(x+y\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\) khi \(x=y\)

AH
Akai Haruma
Giáo viên
30 tháng 1 2018

Lời giải:

Xét biểu thức C

Ta có: \(C=x+\frac{4}{(x-y)(y+1)^2}=x-y+y+\frac{4}{(x-y)(y+1)^2}\)

\(C=(x-y)+\frac{y+1}{2}+\frac{y+1}{2}+\frac{4}{(x-y)(y+1)^2}-1\)

Áp dụng BĐT AM-GM ta có:

\((x-y)+\frac{y+1}{2}+\frac{y+1}{2}+\frac{4}{(x-y)(y+1)^2}\geq 4\sqrt[4]{(x-y).\frac{(y+1)^2}{4}.\frac{4}{(x-y)(y+1)^2}}=4\)

\(\Rightarrow C\geq 4-1=3\Leftrightarrow C_{\min}=3\)

Dấu bằng xảy ra khi \(x=2; y=1\)

Biểu thức D không có điều kiện gì thì không có min em nhé. Trừ khi \(D=x+\frac{1}{xy(x-y)}\)

31 tháng 1 2018

x,y > 0 có được coi là điều kiện không ạ? (câu D ý)

24 tháng 7 2017

có x+y=1 =>\(\left\{{}\begin{matrix}x-1=-y\\y-1=-x\end{matrix}\right.\)khí đó ta có biểu thức tương đương :

\(\dfrac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\dfrac{\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)}{x^2y^2}=\dfrac{\left(-y\right)\left(x+1\right)\left(-x\right)\left(y+1\right)}{x^2y^2}=\dfrac{\left(x+1\right)\left(y+1\right)}{xy}=\dfrac{xy+x+y+1}{xy}=1+\dfrac{2}{xy}\)mà 1=x+y và x+y\(\ge\)2\(\sqrt{xy}\)=> (x+y)2 \(\ge\)4xy do đó 1= (x+y)2 \(\ge\)4xy

=> \(\dfrac{1}{4xy}\ge\dfrac{1}{\left(x+y\right)^2}=>\dfrac{1}{xy}\ge\dfrac{4}{\left(x+y\right)^2}=>\dfrac{2}{xy}\ge8\)=> biểu thức đã cho có GTNN là 9 khi x=y=\(\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
23 tháng 9 2017

Lời giải:

Ta có: \(A=\frac{3}{x^2+y^2}+\frac{4}{xy}=3\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{5}{2xy}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\geq \frac{4}{x^2+y^2+2xy}=\frac{4}{(x+y)^2}=4\)

Áp dụng BĐT Am-Gm: \(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{5}{2xy}\geq 10\)

Do đó: \(A\geq 3.4+10\Leftrightarrow A\geq 22\)

Vậy \(A_{\min}=22\Leftrightarrow x=y=\frac{1}{2}\)