\(\frac{x}{y}\le\frac{x+2019}{y+2019}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2018

Ta có: x , y > 0

Mà ta cần CM: \(\frac{x}{y}\le\frac{x+2019}{y+2019}\)

Ta dễ dàng nhìn thấy \(\frac{x}{y}=\frac{x}{y}\)

Mà đề là: \(\frac{x+2019}{y+2019}\)nên dấu < trong \(\frac{x}{y}< \frac{x+2019}{y+2019}\)là điều đương nhiên

Nhưng đề lại có thêm một yêu cầu là \(\frac{x}{y}\le\frac{x+2019}{y+2019}\). Ta nhận thấy rằng không có bất kì số nào thỏa mãn ,trừ 0. Nhưng đề cho x,y > 0    => Đề sai nhé! Chép lại đề giùm đi bạn

11 tháng 3 2020

ĐK : \(a;b;c\ne0\)

Ta có : \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

=> \(\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{a^2+b^2+c^2}+\frac{z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

=> \(\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{a^2+b^2+c^2}+\frac{z^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=0\)

=> \(x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)=0\)

Vì  \(a;b;c\ne0\)nên \(\hept{\begin{cases}\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\ne0\\\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\ne0\\\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\ne0\end{cases}\Rightarrow\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}\Rightarrow}x=y=z=0}\)

Khi đó : x2019 + y2019 + z2019 = 02019 + 02019 + 02019 = 0

=> x2019 + y2019 + z2019 = 0 (đpcm)

11 tháng 3 2020

Bạn hãy dựa vào link này mà tự làm nhé : 

https://olm.vn/hoi-dap/detail/246211413079.html

Bài làm của mình đó !

7 tháng 7 2020

meo hieu haha

6 tháng 4 2019

Cho mình hỏi x+y+z có điều kiện j ko 

8 tháng 12 2019

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

  • \(\frac{x+y}{3}=\frac{y+z}{4}=\frac{x+z}{5}=\frac{y+z-\left(x+y\right)}{4-3}=\frac{y+z-x-y}{1}=\frac{z-x}{1}\)

\(\Rightarrow\frac{x+z}{5}=\frac{z-x}{1}\)\(\Rightarrow x+z=5\left(z-x\right)\)\(\Rightarrow x+z=5z-5x\)\(\Rightarrow x+5x=5z-z\)\(\Rightarrow6x=4z\)\(\Rightarrow\frac{x}{4}=\frac{z}{6}\)(1)

  • \(\frac{x+y}{3}=\frac{y+z}{4}=\frac{x+z}{5}=\frac{x+z-\left(z+y\right)}{5-4}=\frac{x+z-z-y}{1}=\frac{x-y}{1}\)

\(\Rightarrow\frac{x+y}{3}=\frac{x-y}{1}\)\(\Rightarrow3\left(x-y\right)=x+y\)\(\Rightarrow3x-3y=x+y\)\(\Rightarrow3x-x=y+3y\)\(\Rightarrow2x=4y\)\(\Rightarrow\frac{x}{4}=\frac{y}{2}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{6}=k\)\(\Rightarrow\hept{\begin{cases}x=4k\\y=2k\\z=6k\end{cases}}\)

Ta có: \(M=10x+y-7z+2019\)

\(\Rightarrow M=10.4k+2k-7.6k+2019\)

\(\Rightarrow M=40k+2k-42k+2019=2019\)

Vậy M = 2019

8 tháng 12 2019

mk đang cần gấp ae giúp mk với huhu:((