Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(x,y>0\). Áp dụng BĐT AM-GM, ta có:
\(x^4+y^2\ge2x^2y\)
\(\Rightarrow x^4+y^2+2xy^2\ge2x^2y+2xy^2=2xy\left(x+y\right)\)
\(\Rightarrow\frac{1}{x^4+y^2+2xy^2}\le\frac{1}{2xy\left(x+y\right)}\)(đpcm)
BĐT Vasc cơ bản:
Cho các số dương \(abc=1\) thì:
\(\sum\frac{1}{a^2+a+1}\ge1\)
Chứng minh:
Đặt \(\left\{{}\begin{matrix}a=\frac{yz}{x^2}\\b=\frac{xz}{y^2}\\c=\frac{xy}{z^2}\end{matrix}\right.\) thì BĐT trở thành:
\(\sum\frac{x^4}{x^4+x^2yz+y^2z^2}\ge1\Rightarrow\frac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2yz+y^2xz+z^2xy+x^2y^2+y^2z^2+z^2x^2}\ge1\)
Nhân chéo và thực hiện khai triển:
\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\)
Sau đó rút gọn ta được:
\(x^2y^2+y^2z^2+x^2z^2\ge x^2yz+y^2xz+z^2xy\)
BĐT trên chính là dạng \(a^2+b^2+c^2\ge ab+ac+bc\)
Vậy BĐT đã được chứng minh xong
Ta có \(1+x^2=x^2+xy+yz+xz=\left(x+y\right)\left(x+z\right)\)
Tương tự \(1+y^2=\left(x+y\right)\left(y+z\right)\)
\(1+z^2=\left(x+z\right)\left(y+z\right)\)
Thay vào A ta được
\(P=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
=2(xy+xz+yz)=2
\(b,VT=VP\)
\(\Leftrightarrow\frac{x}{xy+yz+zx+x^2}+\frac{y}{xy+yz+zx+y^2}+\frac{z}{xy+yz+zx+z^2}\)
\(=\frac{2xyz}{\sqrt{\left(xy+yz+zx+x^2\right)\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}}\)
\(\Leftrightarrow\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(x+y\right)\left(y+z\right)}+\frac{z}{\left(x+z\right)\left(y+z\right)}\)
\(=\frac{2xyz}{\sqrt{\left(x+y\right)\left(x+z\right)\left(y+z\right)\left(y+x\right)\left(z+x\right)\left(y+z\right)}}\)
\(\Leftrightarrow\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(\Leftrightarrow xy+xz+xy+yz+xz+yz=2xyz\)
\(\Leftrightarrow2=2xyz\)
\(\Leftrightarrow xyz=1\)
Đù =)))
gọi A là VT
Ta có : \(A=\left[\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)-x^4y^4\right]+\left[\frac{1}{4}\left(x^{16}+y^{16}\right)-2x^2y^2\right]-1\)
Áp dụng BĐT Cô-si,ta có :
\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)\ge\frac{1}{2}2\sqrt{\frac{x^{10}}{y^2}.\frac{y^{10}}{x^2}}=x^4y^4\Rightarrow\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)-x^4y^4\ge0\)
\(\frac{x^{16}+y^{16}}{4}\ge\frac{x^8y^8}{2}=\left(\frac{x^8y^8}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)-\frac{3}{2}\ge4\sqrt[4]{\frac{x^8y^8}{16}}-\frac{3}{2}==2x^2y^2-\frac{3}{2}\)
\(\Rightarrow\frac{1}{4}\left(x^{16}+y^{16}\right)-2x^2y^2\ge\frac{-3}{2}\)
Từ đó ta có : \(A\ge0-\frac{3}{2}-1=\frac{-5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\x^2y^2=1\end{cases}\Leftrightarrow x=y=\pm1}\)
Điều kiện x;y >=1Ta có: \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}\ge\frac{1}{1+xy}\Leftrightarrow\frac{2}{\left(1+x\right)^2}+\frac{2}{\left(1+y\right)^2}\ge\frac{2}{1+xy}\)
Ta có: \(\hept{\begin{cases}\left(1+x\right)^2\le\left(1^2+1^2\right)\left(x^2+1^2\right)=2\left(x^2+1\right)\\\left(1+y\right)^2\le2\left(y^2+1\right)\end{cases}}\)
Cần cm: \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\ge\frac{2}{1+xy}\)
\(\Leftrightarrow\frac{x^2+y^2+2}{\left(x^2+1\right)\left(y^2+1\right)}\ge\frac{2}{1+xy}\)
\(\Leftrightarrow\left(x^2+y^2+2\right)\left(1+xy\right)\ge2\left(x^2+1\right)\left(y^2+1\right)\)
\(\Leftrightarrow x^2+x^3y+y^2+y^3x+2+2xy\ge2x^2y^2+2x^2+2y^2+2\)
\(\Leftrightarrow x^3y+xy^3+2xy-x^2-y^2-2x^2y^2\ge0\)
\(\Leftrightarrow xy\left(x^2+y^2-2xy\right)-\left(x^2-2xy+y^2\right)=\left(xy-1\right)\left(x-y\right)^2\ge0\)(đúng)
"=" khi x=y=1
Đề sai thì phải ah.
Với \(x=1;y=2\) ta có:
\(S=\frac{1}{\left(1+1\right)^2}+\frac{1}{\left(1+2\right)^2}\ge\frac{1}{1+1\cdot2}\)
\(S=\frac{1}{4}+\frac{1}{9}\ge\frac{1}{3}\)
\(S=\frac{13}{36}\ge\frac{1}{3}\left(VL\right)\)
Theo AM-GM , có :
\(x+y\ge2\sqrt{xy}\)
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\)
Nhân vế theo vế :
\( \left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)