\(\text{2abc^3}\)và y = \(3 a^2b^3c^5\) biết xy<0 ch...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2018

\(a^3b^3+2b^3c^3+3a^3c^3\) \(=a^3b^3+2b^3c^3+2a^3c^3+a^3c^3\) \(=a^3\left(b^3+c^3\right)+2c^3\left(a^3+b^3\right)\) \(=-a^6-2c^6\le0\) (đúng) .Dấu "=" khi: \(a=b=c=0\)

28 tháng 10 2018

Ta có:

a3b3 + 2b3c3 + 3a3c3

=a3b3 -b3c3 + 3b3c3 + 3a3c3

= b3 ( a3 - c) +3c(b3 + a3 )

= b(-b3 - 2c3 )  +3c( -c3)

= -b6 - 2 b3 c3  - 3 c6 \(\le\)0

16 tháng 6 2015

Do 2x là số chẵn và 2x+xx+3=114

=>xx+3 là số chẵn =>x={0;2;4;...}

Với x=0 thì 20+03=114(L)

Với x=2 thì 22+25=114(L)

Với x=4 thì 24+47=144 (L)

Do x=4 thì vế trái > vế phải => x>4  thì vế trái càng lớn > vế phải

=>PT trên vô nghiệm

30 tháng 5 2017

bạn ấy nói có sai đó

2^x cũng lẻ khi x = 0 mà!

17 tháng 6 2018

Ta có: x < y \(\Rightarrow\) \(\dfrac{a}{m}\)<\(\dfrac{b}{m}\) \(\Rightarrow\) am < bm (m > 0) \(\Rightarrow\) am + am < bm + am \(\Rightarrow\) 2am < m (b + a) \(\Rightarrow\) \(\dfrac{2a}{m}< \dfrac{a+b}{m}\) \(\Rightarrow\) \(\dfrac{a}{m}< \dfrac{a+b}{m}\). Vậy x < r ( 1 )

T. Tự, ta có: x < y \(\Rightarrow\) \(\dfrac{a}{m}< \dfrac{b}{m}\)\(\Rightarrow\) am < bm (m > 0) \(\Rightarrow\) am + bm < bm + bm \(\Rightarrow\) m ( a + b ) < 2bm \(\Rightarrow\) \(\dfrac{2\left(a+b\right)}{m}< \dfrac{b}{m}\) \(\Rightarrow\dfrac{a+b}{m}< \dfrac{b}{m}\). Vậy r < y (2)

Từ (1) và (2), suy ra : x < r < y .

Lưu ý: Trường hợp này chỉ đúng cho m > 0.

Chúc bn học tốt!!!hahahahahaha

13 tháng 6 2018

Bài 1:

Ta có:

\(\dfrac{a}{b}>\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{a.d}{b.d}>\dfrac{b.c}{b.d}\left(b;d>0\right)\)

\(\Leftrightarrow ad>bc\)

Vậy ...

Bài 2:

Ta có:

\(0< a< 5< b\)

\(\Leftrightarrow a;b>0\)

\(\Leftrightarrow\dfrac{b}{a}>0\)

\(a< 5< b\)

\(\Leftrightarrow a< b\)

\(\Leftrightarrow\dfrac{b}{a}>1\)

Vậy ...

8 tháng 6 2017

1

a) Vì \(\dfrac{a}{b}< \dfrac{c}{d}\)

\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)

\(\Rightarrow ad< bc\)

2

b) Ta có : \(\dfrac{-1}{3}=\dfrac{-16}{48};\dfrac{-1}{4}=\dfrac{-12}{48}\)

Ta có dãy sau : \(\dfrac{-16}{48};\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48};\dfrac{-12}{48}\)

Vậy 3 số hữu tỉ xen giữa \(\dfrac{-1}{3}\)\(\dfrac{-1}{4}\) là :\(\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}\)

1a ) Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)

\(\Leftrightarrow\) \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\) \(\Rightarrow\) ad < bc

1b ) Như trên

2b) \(\dfrac{-1}{3}\) = \(\dfrac{-16}{48}\) ; \(\dfrac{-1}{4}\) = \(\dfrac{-12}{48}\)

\(\dfrac{-16}{48}\) < \(\dfrac{-15}{48}\) <\(\dfrac{-14}{48}\) < \(\dfrac{-13}{48}\) < \(\dfrac{-12}{48}\)

Vậy 3 số hữu tỉ xen giữa là.................

25 tháng 10 2017

3.

Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Leftrightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}\)\(a+2b-3c=-20\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)

+) \(\dfrac{a}{2}=5\Rightarrow a=5.2=10\)

+) \(\dfrac{2b}{6}=5\Rightarrow2b=5.6=30\Rightarrow b=30:2=15\)

+) \(\dfrac{3c}{12}=5\Rightarrow3c=5.12=60\Rightarrow c=60:3=20\)

Vậy ...

25 tháng 10 2017

3.

ta có:\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\)=>\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\) và a+2b-3c=-20

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\)=\(\dfrac{a+2b-3c}{2+6-12}\)\(\dfrac{-20}{-4}\)=5

\(\dfrac{a}{2}\)=5=>a=2.5=10

\(\dfrac{2b}{6}\)=5=>2b=5.6=30=>b=30:2=15

\(\dfrac{3c}{12}\)=5=>3c=5.12=60=>c=60:3=20

vậy a=10,b=15,c=20

chúc bạn hok tốt

Câu 1: Cho các số \(0< a_1< a_2< a_3< ...< a_{15}\). Chững minh rằng \(\dfrac{a_1+a_2+a_3+...+a_{15}}{a_5+a_{10}+a_{15}}< 5\) Câu 2: Tìm x và y biết: \(\dfrac{1+5y}{24}=\dfrac{1+7y}{7x}=\dfrac{1+9y}{2x}\) Câu 3: Cho \(\dfrac{x}{3}=\dfrac{y}{4}\) và \(\dfrac{y}{5}=\dfrac{z}{6}\). Tính M = \(\dfrac{2x+3y+4z}{3x+4y+5z}\) Câu 4: Cho \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\). Chứng minh: \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\) Câu 5: Cho 4 số a, b,...
Đọc tiếp

Câu 1: Cho các số \(0< a_1< a_2< a_3< ...< a_{15}\). Chững minh rằng \(\dfrac{a_1+a_2+a_3+...+a_{15}}{a_5+a_{10}+a_{15}}< 5\)

Câu 2: Tìm x và y biết: \(\dfrac{1+5y}{24}=\dfrac{1+7y}{7x}=\dfrac{1+9y}{2x}\)

Câu 3: Cho \(\dfrac{x}{3}=\dfrac{y}{4}\)\(\dfrac{y}{5}=\dfrac{z}{6}\). Tính M = \(\dfrac{2x+3y+4z}{3x+4y+5z}\)

Câu 4: Cho \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\). Chứng minh: \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)

Câu 5: Cho 4 số a, b, c, d đều ≠ 0 thoả mãn \(b^2=ac\), \(c^2=bd\), \(b^3+27c^3+8d^3\) ≠ 0. Chứng minh rằng: \(\dfrac{a}{d}=\dfrac{a^3+27b^3+8c^3}{b^3+27c^3+8d^3}\)

Câu 6: Cho \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\). Tính giá trị của biểu thức A = \(2016x+y^{2017}+x^{2017}\)

Câu 7: Tìm giá trị nhỏ nhất của biểu thức A biết: \(A=\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+zy+zx-2000\right|\)

Câu 8: Tìm 3 số a, b, c biết: \(\dfrac{3a-2b}{4}=\dfrac{2c-4a}{3}=\dfrac{4b-3c}{2}\)\(a+b+c=18\).

5
3 tháng 12 2018

hỏi mỗi từng câu 1 thôi nhé ! Vậy mình giải cho . Mình k có ý kiếm GP + SP đâu . Nhưng nhìn 8 câu này hoa hết cả mắt :v

3 tháng 12 2018

Đúng thật. Tớ nhìn cũng thấy ngán mà. Nhiều quá nên hơi nản limdim

14 tháng 4 2019

a, xy+2x-y=5

=> x(y+2)-y-2=3

=>x(y+2)-(y+2)=3

=>(x-1)(y+2)=3

=>\(\hept{\begin{cases}x-1=3\Rightarrow x=4\\y+2=1\Rightarrow y=-1\end{cases}}\)\(\hept{\begin{cases}x-1=1\Rightarrow x=2\\y+2=3\Rightarrow y=1\end{cases}}\)

=>\(\hept{\begin{cases}x-1=-1\Rightarrow x=0\\y+2=-3\Rightarrow y=-5\end{cases}}\)\(\hept{\begin{cases}x-1=-3\Rightarrow x=-2\\y+2=-1\Rightarrow y=-3\end{cases}}\)

vậy (x;y)\(\in\)(4,-1);(2,1);(0,-5);(-2.-3)

14 tháng 4 2019

từ\(\frac{2bz-3cy}{a}\)=\(\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}\)

=>\(\frac{2abz-3acy}{a}\)=\(\frac{6bcx-2abz}{2b}\)=\(\frac{3cay-6cbx}{3c}\)

=\(\frac{2abz-3acy+6bcx-2abz+3cay-6cbx}{2a+4b+6c}\)=0

=>\(\frac{2bz-3cy}{a}=0\)=>2bz=3cy=>\(\frac{z}{3c}\)=\(\frac{y}{2b}\)(1)

=>\(\frac{3cx-az}{2b}\)=0 =>3cx=az =>\(\frac{x}{a}\)=\(\frac{z}{3c}\)(2)

=>\(\frac{ay-2bx}{3c}=0\)=>ay=2bx =>\(\frac{y}{2b}\)=\(\frac{x}{a}\)(3)

Từ (1),(2) và (3) suy ra\(\frac{x}{a}=\frac{y}{2b}=\frac{z}{3c}\)đpcm