Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222
E hổng biết cách này có đúng ko nữa:((
5
Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)
\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )
Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{x^2y^2}+1}\ge\frac{\left(x+1\right)\left(y+1\right)^2}{xy+x+y+1}=\frac{\left(x+1\right)\left(y+1\right)^2}{\left(x+1\right)\left(y+1\right)}=y+1\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(P\ge x+y+z+3=6\)
Dấu "=" <=> x=y=z=1
Ta có: \(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\)
mà \(\left(x+\sqrt{x^2+3}\right)\left(\sqrt{x^2+3}-x\right)=3\Rightarrow\sqrt{x^2+3}-x=y+\sqrt{y^2+3}\)
\(\Rightarrow x+y=\sqrt{x^2+3}-\sqrt{y^2+3}\left(1\right)\)
Mặt khác \(\left(y+\sqrt{y^2+3}\right)\left(\sqrt{y^2+3}-y\right)=3\)
\(\Rightarrow\sqrt{y^2+3}-y=\sqrt{x^2+3}+x\Rightarrow x+y=\sqrt{y^2+3}-\sqrt{x^2+3}\left(2\right)\)
Lấy \(\left(1\right)+\left(2\right)\Rightarrow2\left(x+y\right)=0\Rightarrow x+y=0\)