\(\sqrt{x^2+2018}\))(y+\(\sqrt{y^2+2018}\)) =2018

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

PT đã cho

<=>\(\left(x+\sqrt{x^2+2008}\right)\left(x-\sqrt{x^2+2008}\right)\left(y+\sqrt{y^2+2008}\right)\)

=2008(\(x-\sqrt{x^2+2008}\))

<=>\(-2008\left(y+\sqrt{y^2+2008}\right)=2008\left(x-\sqrt{x^2+2008}\right)\)

<=>\(y+\sqrt{y^2+2008}=\sqrt{x^2+2008}-x\)

<=>\(y=\sqrt{x^2+2008}-\sqrt{y^2+2008}-x\) (1)

TT ta có PT đã cho <=>

\(\left(x+\sqrt{x^2+2008}\right)\left(y+\sqrt{y^2+2008}\right)\left(y-\sqrt{y^2+2008}\right)\)

=\(2008\left(y-\sqrt{y^2-2008}\right)\)

biến đổi như trên ta được

x=\(\sqrt{y^2+2008}-\sqrt{x^2+2008}-y\) (1)

Cộng vế với vế (1) và(2) ta được

x+y=-x-y

=>2(x+y)=0

=>x+y=0

*Có gì không hiểu thì hỏi nha

23 tháng 10 2017

chỗ x=\(\sqrt{y^2+2008}-\sqrt{x^2+2008}-y\)

là (2)

4 tháng 9 2020

P/s : làm bừa thôi!

\(\sqrt{x-2018}+\sqrt{x^2+11}+x^2=\sqrt{y^2+11}+\sqrt{y-2018}+y^2\)

\(\Leftrightarrow x=y\)

\(\Rightarrow M=x^{11}-x^{2018}\)

Đến đây em tịt !!

NV
26 tháng 9 2019

\(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\)

\(\Rightarrow\left\{{}\begin{matrix}2018\left(x+\sqrt{x^2+2018}\right)=2018\left(\sqrt{y^2+2018}-y\right)\\2018\left(y+\sqrt{y^2+2018}\right)=2018\left(\sqrt{x^2+2018}-x\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+\sqrt{x^2+2018}=\sqrt{y^2+2018}-y\\y+\sqrt{y^2+2018}=\sqrt{x^2+2018}-x\end{matrix}\right.\)

Cộng vế với vế:

\(x+y=-x-y\Rightarrow x=-y\)

\(\Rightarrow x^{2019}=-y^{2019}\Rightarrow x^{2019}+y^{2019}=0\)

28 tháng 12 2018

nhờ bạn gửi câu hỏi đúng lúc mà mình đỡ phải gửi

28 tháng 12 2018

Ta có: 

\(P=\frac{\sqrt{x+y}}{\sqrt{x-2018}+\sqrt{y-2018}}\)

\(\Leftrightarrow P^2=\frac{x+y}{x+y-4036+2\sqrt{\left(x-2018\right)\left(y-2018\right)}}\)

\(=\frac{x+y}{x+y-4036+2\sqrt{xy-2018x-2018y+2018^2}}\)

Mặt khác : 

\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2018}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{2018}\)

\(\Leftrightarrow2018x+2018y=xy\)

\(\Leftrightarrow xy-2018x-2018y=0\)(1)

Thế (1) vào P^2 ta có : 

\(P^2=\frac{x+y}{x+y-4036+2\sqrt{2018^2}}=\frac{x+y}{x+y}=1\)

\(\Rightarrow P=.......\)

NV
20 tháng 10 2019

ĐKXĐ:...

\(\Leftrightarrow\sqrt{x^2+11}-\sqrt{y^2+11}+\sqrt{x-2018}-\sqrt{y-2018}+x^2-y^2=0\)

\(\Leftrightarrow\frac{\left(x-y\right)\left(x+y\right)}{\sqrt{x^2+11}+\sqrt{y^2+11}}+\frac{x-y}{\sqrt{x-2018}+\sqrt{y-2018}}+\left(x-y\right)\left(x+y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(\frac{x+y}{\sqrt{x^2+11}+\sqrt{y^2+11}}+\frac{1}{\sqrt{x-2018}+\sqrt{y-2018}}+x+y\right)=0\)

\(\Leftrightarrow x=y\) (ngoặc phía sau luôn dương)

Thay vào M chẳng được cái gì cả, \(M=x^{11}-x^{2018}\) :(

Chắc bạn nhầm đề

20 tháng 10 2019

Cô chữa rồi =)) giải đến x = y rồi thay vào là được. x, y thuộc điều kiện xác định rồi thì M số bự chà bá luôn nên là tính dạng tổng quát thôi

29 tháng 6 2018

1/x + 1/y = 1/2018

<=> 1/x = 1/2018 - 1/y = (y - 2018)/(2018y) 

<=> x = 2018y/(y - 2018) 

=> x + y = 2018y/(y - 2018) + y = y^2/(y - 2018) 

=> x - 2018 = 2018y/(y - 2018) - 2018 = 2018^2/(y - 2018) 

=> P = 1