\(x=\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}.\)Tính giá trị của biểu t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2018

Ta có:

\(x=\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}\)   ( x> 0 )

\(\Rightarrow x^2=6+2\sqrt{\left(3+\sqrt{5+2\sqrt{3}}\right)\left(3-\sqrt{5+2\sqrt{3}}\right)}\)

\(=6+2\sqrt{9-5-2\sqrt{3}}\)

\(=6+2\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=6+2\sqrt{3}-2=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)

\(\Rightarrow x=\sqrt{3}+1\)

Vậy :

\(A=x^2-2x-2=4+2\sqrt{3}-2\sqrt{3}-2-2\)

\(=0\)

14 tháng 7 2021

 \(x=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3+2\sqrt{2}}\)

Ta có: Đặt \(A=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}\)=> \(A^2=\frac{\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}}{\sqrt{5}+1}\)

=> \(A^2=\frac{2\sqrt{5}+2\sqrt{5-4}}{\sqrt{5}+1}=\frac{2\left(\sqrt{5}+1\right)}{\sqrt{5}+1}=2\)=> \(A=\sqrt{2}\)

 \(\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)

==> \(x=\sqrt{2}-\left(\sqrt{2}+1\right)=-1\)

Do đó: N = (-1)2019 + 3.(-1)2020 - 2.(-1)2021 = -1 + 3 + 2 = 4

11 tháng 8 2017

ai nay dung kinh nghiem la chinh

cau a)

ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)

\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)

khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)

\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)

\(x=\frac{3-1}{1}=2\)

suy ra 

x^3-4x+1=1

A=1^2018

A=1

b)

ta thay

\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)

khi do 

\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)

\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)

x=2

thay vao

x^3+3x-14=0

B=0^2018

B=0

16 tháng 12 2018

Ta có : \(x=\dfrac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}\sqrt{\dfrac{3\sqrt{2}+2\sqrt{3}}{3\sqrt{2}-2\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}\sqrt{\dfrac{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}}\)

\(=\dfrac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}.\dfrac{\sqrt{\sqrt{3}+\sqrt{2}}}{\sqrt{\sqrt{3}-\sqrt{2}}}\)

\(=\dfrac{\sqrt{2}}{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}}\)

\(=\dfrac{\sqrt{2}}{\sqrt{1}}=\sqrt{2}\)

Thay \(x=\sqrt{2}\) vào biểu thức A ta được :

\(A=\left(\sqrt{2}^3-2\sqrt{2}+1\right)^{2012}=1^{2012}=1\)

Vậy \(A=1\)

4 tháng 2 2018

Đặt a = \(\sqrt{2+\sqrt{\frac{5+\sqrt{5}}{2}}+\sqrt{2}-\sqrt{\frac{5+\sqrt{5}}{2}}}\)

\(a^2=4+2\sqrt{4-\frac{5+\sqrt{5}}{2}}=4+\sqrt{6-2\sqrt{5}}\)

\(=4+\sqrt{\left(\sqrt{5}-1\right)^2}=3+\sqrt{5}\Rightarrow a=\sqrt{3}+\sqrt{5}\)

\(\Rightarrow\)\(x=\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-1\)

\(=\sqrt{\frac{6+2\sqrt{5}}{2}}-\sqrt{\frac{6-2\sqrt{5}}{2}}-1=\frac{\sqrt{5}+1}{\sqrt{2}}-\frac{\sqrt{5}-1}{\sqrt{2}}-1\)

\(=\sqrt{2}-1\Rightarrow x=\sqrt{2}-1\Rightarrow x=x^2+2x-1=0\)

\(B=2x^3+3x^2-4x+2\)

\(B=2x\left(x^2+2x-1\right)-\left(x^2+2x-1\right)+1=1\)

4 tháng 2 2018

Tham khao:

2,Biết x+y=5x+y=5 và x+y+x2y+xy2=24x+y+x2y+xy2=24 Giá trị của biểu thức x3+y3x3+y3 là

3,Nếu đa thức x2+px2+qx2+px2+q chia hết cho đa thức x2−2x−3x2−2x−3 thì khi đó giá trị của

2) x+y+x2y+xy2=24⇔x+y+xy(x+y)=24⇔5+5xy=24⇔xy=24−55=3,8x+y+x2y+xy2=24⇔x+y+xy(x+y)=24⇔5+5xy=24⇔xy=24−55=3,8

(x+y)=5⇔x2+2xy+y2=25⇔x2+y2=25−2xy=17,4(x+y)=5⇔x2+2xy+y2=25⇔x2+y2=25−2xy=17,4

x3+y3=(x+y)(x2−xy+y2)=5(17,4−3,8)=68

3) x4−2x−3=(x+1)⋅(x−3)x4−2x−3=(x+1)⋅(x−3)

Để đa thức x4+px2+q⋮x2−2x−3x4+px2+q⋮x2−2x−3 => Có hai nghiệm của x là x = -1 hoặc x = 3.

+) Xét x = -1 : x4+px2+q=0⇒(−1)4+p⋅(−1)2+q=0x4+px2+q=0⇒(−1)4+p⋅(−1)2+q=0

⇒1+p+q=0→q=−1−p⇒1+p+q=0→q=−1−p (1)

+) Xét x = 3 : x4+px2+q=0⇒34+p⋅32+q=0x4+px2+q=0⇒34+p⋅32+q=0

⇒81+p⋅9+q=0⇒81+p⋅9+q=0 (2)

Thế (1) vào (2) ta có : 81+9⋅p−1−p=081+9⋅p−1−p=0

⇔80+8p=0⇔80+8p=0

⇔p=−10⇔p=−10

Vậy giá trị của p là -10.

AH
Akai Haruma
Giáo viên
22 tháng 9 2020

Lời giải:

Đặt $\sqrt[3]{5\sqrt{2}+7}=a; \sqrt[3]{5\sqrt{2}-7}=b$

Ta có:

$a^3-b^3=14$

$ab=\sqrt[3]{(5\sqrt{2}+7)(5\sqrt{2}-7)}=1$

$x=a-b$

$\Rightarrow x^3=(a-b)^3=a^3-b^3-3ab(a-b)=14-3.1.x$

$\Leftrightarrow x^3+3x-14=0$

$\Leftrightarrow (x-2)(x^2+2x+7)=0$

Dễ thấy $x^2+2x+7>0$ nên $x-2=0$

$\Rightarrow x=2$

$\Rightarrow f(x)=x^3+2x=2^3+2.2=12$