Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) theo tính chất của dãy tỉ số bằng nhau có
\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=\frac{x-y-z-x+y-z-x-y+z}{x+y+z}=\frac{-\left(x+y+z\right)}{x+y+z}=-1\)
=> x - y - z = - x => 2.x = y + z
y - x - z = - y => 2.y = x+z
z - x - y = - z => 2.z = x+y
Ta có: \(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}=\frac{2z}{x}.\frac{2x}{y}.\frac{2y}{z}=\frac{2xyz}{xyz}=2\)
b) Vì \(\left|x+3y-1\right|\ge0\); \(-3\left|y+3\right|\le0\)
=> \(\left|x+3y-1\right|=-3\left|y+3\right|\) khi \(\left|x+3y-1\right|=-3\left|y+3\right|=0\)
=> x+ 3y - 1 = 0 và y + 3 = 0
=> x = 1 - 3y và y = -3 => x = 1- 3(-3) = 10; y = -3
=> C = 4.102.(-3) + 2.10.(-3)2 - (-3)2 = -1029
Áp dung tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Theo bài cho \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)=> \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)
=> y + z + 1 = 2x; x + z + 2 = 2y; x + y - 3 = 2z; x+ y + z = 1/2
+) x + y + z = 1/2 => y + z = 1/2 - x. Thay vào y + z + 1 = 2x ta được 1/2 - x + 1 = 2x => 3/2 = 3x => x = 1/2
+) x + y + z = 1/2 => x + z = 1/2 - y . Thay vào x + z + 2 = 2y ta được 1/2 - y + 2 = 2y => 5/2 = 3y => y = 5/6
=> x+ y + z = 1/2 + 5/6 + z = 1/2 => 4/3 + z = 1/2 => z = 1/2 - 4/3 = -5/6
Vậy.....
Lời giải:
Ta có:
\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(x+z\right).\left(y+x\right).\left(z+y\right)}{xyz}\)
+) Nếu .\(x+y+z\ne0\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(=\frac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(..............\)
xét 2 t hợp
th1: a+b+c=0
th2:a+b+c khác 0
bài này dài lắm nếu cần thiết thì mình giải cho
Vì x,y,z khác 0 nên không xét TH x+y+z=0 được!
Do đó x+y+z phải khác 0
Theo t/c dãy tỉ số=nhau:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+x}{x+y+z}=1\)
Suy ra \(y+z-x=x=>y+z=2x\)
\(z+x-y=y=>z+x=2y\)
\(x+y-z=z=>x+y=2z\)
Vậy \(M=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{x}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{x+y}{x}.\frac{z+x}{x}=\frac{2z}{y}.\frac{2z}{x}.\frac{2y}{x}=\frac{8z^2y}{x^2y}=\frac{8z^2}{x^2}\)
bn nên xem lại đề
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(\Rightarrow x=y=z\)
\(\Rightarrow\frac{x}{y}=1;\frac{y}{z}=1;\frac{z}{x}=1\)
\(\Rightarrow B=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2^3=8\)
y/x-z = x+y/z = x/y
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
y/x-z = x+y/z = x/y = (y + x + y + x)/(x -x + z - y) = 2(x+y)/x+y
=> x/y = 2
vậy x/y = 2