Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}f\left(0\right)⋮5\Rightarrow c⋮5\\f\left(1\right)⋮5\Rightarrow\left(a+b+c\right)⋮5\\f\left(-1\right)⋮5\Rightarrow\left(a-b+c\right)⋮5\\\left[\left(a+b+c\right)+\left(a-b+c\right)\right]=2\left(a+c\right)⋮5\Rightarrow a⋮5\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}c⋮5\\a⋮5\\b⋮5\end{matrix}\right.\)+> dpcm
a) ta có: \(A=\frac{2x}{x-2}=\frac{2x-4+4}{x-2}=\frac{2.\left(x-2\right)+4}{x-2}=\frac{2.\left(x-2\right)}{x-2}+\frac{4}{x-2}=2+\frac{4}{x-2}\)
Để \(A\inℤ\)
\(\Rightarrow\frac{4}{x-2}\inℤ\)
\(\Rightarrow4⋮x-2\Rightarrow x-2\inƯ_{\left(4\right)}=\left(4;-4;2;-2;1;-1\right)\)
nếu x -2 = 4 => x = 6 (TM)
x- 2= - 4 => x= - 2 (TM)
x- 2= 2 => x = 4 (TM)
x- 2 = -2 => x = 0 (TM)
x - 2 = 1 => x = 3 (TM)
x - 2 = -1 => x= 1 (TM)
KL: \(x\in\left(6;-2;4;0;3;1\right)\)
c) ta có: \(C=\frac{x^2+2}{x+1}=\frac{\left(x+1\right).\left(x-1\right)+3}{x+1}=\frac{\left(x+1\right).\left(x-1\right)}{x+1}+\frac{3}{x+1}\)\(=x-1+\frac{3}{x+1}\)
Để \(C\inℤ\)
\(\Rightarrow\frac{3}{x+1}\inℤ\)
\(\Rightarrow3⋮x+1\Rightarrow x+1\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)
nếu x + 1 = 3 => x = 2 (TM)
x + 1 = - 3 => x = -4 (TM)
x + 1 = 1 => x = 0
x + 1 = -1 => x = -2 (TM)
KL: \(x\in\left(2;-4;0;-2\right)\)
p/s
ĐKXĐ: \(x\ne-\dfrac{1}{2}\)
Ta có: \(D=\dfrac{2a^3+a^2+2a+4}{2a+1}=\dfrac{a^2\left(2a+1\right)+\left(2a+1\right)+3}{2a+1}\)
\(=\dfrac{\left(2a+1\right)\left(a^2+1\right)+3}{2a+1}=\dfrac{\left(2a+1\right)\left(a^2+1\right)}{2a+1}+\dfrac{3}{2a+1}\) \(=a^2+1+\dfrac{3}{2a+1}\)
Để \(D\in Z\) <=> \(a^2+1+\dfrac{3}{2a+1}\in Z\)
=> \(\left\{{}\begin{matrix}a^2\in Z\\\dfrac{3}{2a+1}\in Z\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a\in Z\\\dfrac{3}{2a+1}\in Z\end{matrix}\right.\)
Để \(\dfrac{3}{2a+1}\in Z\) <=> \(3⋮2a+1\)
mà \(a\in Z\) => \(2a+1\inƯ_{\left(3\right)}=\left\{\pm1;\pm3\right\}\)
Ta có bảng:
2a+1 | 1 | -1 | 3 | -3 |
a | 0 | -1 | 1 | -2 |
Vậy \(D\in Z\) khi \(a\in\left\{0;\pm1;-2\right\}\)
a, 4C = 12|x|+8/4|x|-5 = 3 + 23/|x|-5 <= 3 + 23/0-5 = -8/5
=> C <= -2/5
Dấu "=" xảy ra <=> x=0
Vậy Min ...
b, Để C thuộc N => 3|x|+2 chia hết cho 4|x|-5
=> 4.(3|x|+2) chia hết cho 4|x|-5
<=> 12|x|+8 chia hết cho 4|x|-5
<=> 3.(|x|+5) + 23 chia hết cho 4|x|-5
=> 23 chia hết chi 4|x|-5 [ vì 3.(4|x|-5) chia hết cho 4|x|-5 ]
Đến đó bạn tìm ước của 23 rùi giải
\(A=\dfrac{3x^2-9x+x-3+2}{x-3}\)
\(B=\dfrac{x^2\left(x+2\right)+5\left(x+2\right)}{\left(x+2\right)^2}=\dfrac{x^2+5}{x+2}=x-2+\dfrac{9}{x+2}\)
Để A và B cùng là số nguyên thì
\(\left\{{}\begin{matrix}x-3\in\left\{1;-1;2;-2\right\}\\x+2\in\left\{1;-1;3;-3;9;-9\right\}\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x\in\left\{4;2;5;1\right\}\\x\in\left\{-1;-3;1;-5;7;-11\right\}\end{matrix}\right.\)
hay x=1
a) A=\(\frac{x^2-2x}{x^2-4x+4}\)=\(\frac{x^2-2x}{x^2-2.1.2x+2^2}\)=\(\frac{x\left(x-2\right)}{\left(x-2\right)^2}\)=\(\frac{x}{x-2}\)
b) \(x-2=0\) nên \(x\Rightarrow2\), ví dụ \(x=3\) thì \(A=\frac{3}{3-2}=\frac{3}{1}=3\)