\(x\ge9\)Tìm max của \(A=\frac{\sqrt{x-9}}{5x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

Với  \(x\ge9\).

Ta có:  \(A=\frac{\sqrt{x-9}}{5x}\)

<=> \(5Ax=\sqrt{x-9}\)

<=> \(\hept{\begin{cases}A\ge0\\25A^2x^2=x-9\left(1\right)\end{cases}}\)

(1) <=> \(25A^2x^2-x+9=0\)

phương trình trên có nghiệm  <=> \(\Delta\ge0\)<=> \(1^2-900A^2\ge0\)<=> \(-\frac{1}{30}\le A\le\frac{1}{30}\)

=> \(Amax=\frac{1}{30}\) xảy ra <=> \(25.\frac{1}{900}x^2-x+9=0\Leftrightarrow x=18>9\)(thỏa mãn)

Vậy:...

16 tháng 10 2019

Nguyễn Linh Chi em có cách lớp 8 (nâng cao) này:)

ĐK: x>= 9

Xét a > 0.

Ta có: \(A=\frac{1}{\sqrt{a}}.\frac{\sqrt{a\left(x-9\right)}}{5x}\le\frac{1}{\sqrt{a}}.\frac{a+x-9}{10x}=\frac{\sqrt{a}}{10x}+\frac{1}{10\sqrt{a}}-\frac{9}{10x\sqrt{a}}\)

\(=\frac{1}{10x}\left(\sqrt{a}-\frac{9}{\sqrt{a}}\right)+\frac{1}{10\sqrt{a}}\)

Như vậy ta chọn a để biểu thức không phụ thuộc vào biến x. Tức là \(\sqrt{a}-\frac{9}{\sqrt{a}}=0\Leftrightarrow a=9\)

Bây giờ thay ngược a bởi 9 vào các cái bên trên là xong:D. Ta được: \(A\le\frac{1}{30}\)

Đẳng thức xảy ra khi a = x -9 <=> 9 =x-9<=>x=18

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

21 tháng 6 2017

viết x = (x - 9) + 9 

do x - 9 nằm trong căn bậc hai nên nó ko âm 

sử dụng cauchy cho hai số x - 9 và 9 ta có 

x = (x - 9) + 9 >=2căn(9*(x-9))=6*căn(x-9) 

suy ra A <=1/30 

dấu bằng có được khi x = 18 lúc đó max A = 1/30

Vậy...

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

15 tháng 8 2019

\(B=\frac{9-x}{\sqrt{x}+3}-\frac{9-6\sqrt{x}+x}{\sqrt{x}-3}-6\)

\(=\frac{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)

\(=3-\sqrt{x}-\sqrt{x}+3-6\)

\(=-2\left(\sqrt{x}+3\right)\)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)