\(x\ge2,y\ge0\) thỏa mãn: \(y^2\sqrt{x-2}+\sqrt{x-2}=2y\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 2 2019

Đặt \(\sqrt{x-2}=a\ge0\)

\(\Rightarrow ay^2-2y+a=0\)

\(\Delta'=1-a^2\ge0\Rightarrow\left|a\right|\le1\Rightarrow0\le a\le1\)

\(\Rightarrow\sqrt{x-2}\le1\Rightarrow x\le3\Rightarrow x^3\le27\)

17 tháng 2 2019

ta co:\(y^2\sqrt{x-2}-2y+\sqrt[]{x-2}=0\)

xét denta:\(\Delta=b^2-4ac=4-4.\left(x-2\right)=4\left(3-x\right)\)

để có y thỏa mãn => denta >=0

=>\(3>=x\)

=>dpcm

3 tháng 10 2019

Áp dụng bdt cosi-schwar cho 3 số (\(\left(am+bn+cp\right)^2\le\left(a^2+b^2+c^2\right)\)\(\left(m^2+n^2+p^2\right)\)

với a=x,b=y\(\sqrt{2}\);c=z\(\sqrt{5}\);  m=\(\sqrt{11-2y^2},n=\sqrt{3-5z^2}\),\(p=\sqrt{2-x^2}\)

82\(\le\left(x^2+2y^2+5z^2\right)\left(11-2y^2+3-5z^2+1-x^2\right)\)  <=>64\(\le P\left(16-P\right)\)

<=>P2-16P+64\(\le0< =>\left(P-8\right)^2\le0\)  <=>P=8

8 tháng 10 2017

\(\Leftrightarrow2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}-1=0\\\sqrt{y-1}-1=0\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\\\sqrt{z-2}-1=0\end{cases}}\)

8 tháng 10 2017

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}-1=0\\\sqrt{y-1}-1=0\Leftrightarrow\\\sqrt{z-2}-1=0\end{cases}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}}\)

vậy \(S=x+y=1+2=3\)

1) Cho x > 1. Tìm GTNN của:   ​\(A=\frac{1+x^4}{x\left(x-1\right)\left(x+1\right)}\)2) Trong các cặp (x;y) thỏa mãn \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\). Tìm cặp có tổng x + 2y lớn nhất.3) Cho x thỏa mãn \(x^2+\left(3-x\right)^2\ge5\). Tìm GTNN của \(A=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)4) Tìm GTNN của \(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)5) Cho x, y > 1....
Đọc tiếp

1) Cho x > 1. Tìm GTNN của:   ​\(A=\frac{1+x^4}{x\left(x-1\right)\left(x+1\right)}\)

2) Trong các cặp (x;y) thỏa mãn \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\). Tìm cặp có tổng x + 2y lớn nhất.

3) Cho x thỏa mãn \(x^2+\left(3-x\right)^2\ge5\). Tìm GTNN của \(A=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)

4) Tìm GTNN của \(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)

5) Cho x, y > 1. Tìm GTNN của \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)

6) Cho x, y, z > 0 thỏa mãn: \(xy^2z^2+x^2z+y=3z^2\). Tìm GTLN của \(P=\frac{z^4}{1+z^4\left(x^4+y^4\right)}\)

7) Cho a, b, c > 0. CMR:\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

8) Cho x>y>0. và \(x^5+y^5=x-y\). CMR: \(x^4+y^4<1\)

9) Cho \(1\le a,b,c\le2\). CMR: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)

10) Cho \(x,y,z\ge0\)CMR: \(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\le\sqrt[3]{\frac{x+y}{2}}+\sqrt[3]{\frac{y+z}{2}}+\sqrt[3]{\frac{z+x}{2}}\)

11) Cho \(x,y\ge0\)thỏa mãn \(x^2+y^2=1\)CMR: \(\frac{1}{\sqrt{2}}\le x^3+y^3\le1\)

12) Cho a,b,c > 0 và a + b + c = 12. CM: \(\sqrt{3a+2\sqrt{a}+1}+\sqrt{3b+2\sqrt{b}+1}+\sqrt{3c+2\sqrt{c}+1}\le3\sqrt{17}\)

13) Cho x,y,z < 0 thỏa mãn \(x+y+z\le\frac{3}{2}\). CMR: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge3\sqrt{17}\)

14) Cho a,b > 0. CMR: \(\left(\sqrt[6]{a}+\sqrt[6]{b}\right)\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\le4\left(a+b\right)\)

15) Với a, b, c > 0. CMR: \(\frac{a^8+b^8+c^8}{a^3.b^3.c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

16) Cho x, y, z > 0 và \(x^3+y^3+z^3=1\)CMR: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\)

3
20 tháng 1 2016

cậu đăng mỗi lần 1 đến 2 câu thôi chứ nhiều thế này ai làm cho hết được

20 tháng 1 2016

Ok lần đầu mình đăng nên chưa biết, cảm ơn cậu đã góp ý, mình sẽ rút kinh nghiệm!!

3 tháng 9 2017

\(x^3+y^3=2x^2y^2\Rightarrow\)\(\left(x^3+y^3\right)^2=4x^4y^4\Rightarrow x^6+2x^3y^3+y^6=4x^4y^4\)\(\Rightarrow x^6+2x^3y^3+y^6-4x^3y^3=4x^4y^4-4x^3y^3\)\(\Rightarrow\left(x^3-y^3\right)^2=4x^4y^4\left(1-\frac{1}{xy}\right)\)

\(\Rightarrow\sqrt{1-\frac{1}{xy}}=\)\(\frac{\left|x^3-y^3\right|}{2x^2y^2}\)mà x:y hữu tie suy ra điều phải cm

4 tháng 9 2017

Cái bài này bạn làm ra chưa:

\(\sqrt{\frac{a+b}{c}}+\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}\ge2\left(\sqrt{\frac{c}{a+b}}+\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}\right)\)

26 tháng 10 2019

1. Ta có: \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Rightarrow\left(x+y+z\right)^2=\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=xy+yz+zx+2y\sqrt{xz}+2z\sqrt{xy}+2x\sqrt{yz}\)

\(\Leftrightarrow x^2+y^2+z^2+xy+yz+zx-2y\sqrt{xz}-2z\sqrt{xy}-2x\sqrt{yz}=0\)

\(\Leftrightarrow\left(x-\sqrt{yz}\right)^2+\left(y-\sqrt{xz}\right)^2+\left(z-\sqrt{xy}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{yz}\\y=\sqrt{xz}\\z=\sqrt{xy}\end{matrix}\right.\)

\(\Rightarrow x^2+y^2+z^2-xy-yz-zx=0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\Rightarrow x=y=z\)

AH
Akai Haruma
Giáo viên
26 tháng 10 2019

Bài 1:
\(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

\(\Leftrightarrow x+y+z-\sqrt{xy}-\sqrt{yz}-\sqrt{xz}=0\)

\(\Leftrightarrow 2x+2y+2z-2\sqrt{xy}-2\sqrt{yz}-2\sqrt{xz}=0\)

\(\Leftrightarrow (x+y-2\sqrt{xy})+(y+z-2\sqrt{yz})+(z+x-2\sqrt{xz})=0\)

\(\Leftrightarrow (\sqrt{x}-\sqrt{y})^2+(\sqrt{y}-\sqrt{z})^2+(\sqrt{z}-\sqrt{x})^2=0\)

\( (\sqrt{x}-\sqrt{y})^2;(\sqrt{y}-\sqrt{z})^2;(\sqrt{z}-\sqrt{x})^2\geq 0, \forall x,y,z>0\) nên để tổng của chúng bằng $0$ thì:

\( (\sqrt{x}-\sqrt{y})^2=(\sqrt{y}-\sqrt{z})^2=(\sqrt{z}-\sqrt{x})^2=0\)

\(\Rightarrow x=y=z\) (đpcm)