Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{3+\sqrt{3}}{1+\sqrt{3}}\)=\(\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{1+\sqrt{3}}\)=\(\sqrt{3}\)
b)\(\frac{2\sqrt{3}-6}{\sqrt{8}-\sqrt{2}}\)
\(\frac{y-2\sqrt{y}}{\sqrt{y}-2}\)=\(\frac{\sqrt{y}\left(\sqrt{y}-2\right)}{\sqrt{y}-2}\)=\(\sqrt{y}\)
d) \(\frac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)=\(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x+3}\right)}{\sqrt{x}-1}\)=\(\sqrt{x}\)+3
e)\(\frac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)=\(\frac{\left(\sqrt{y}-1\right)\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)=\(\sqrt{y}\)-1
g)\(\frac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)=\(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}\)=\(\frac{\sqrt{x}+1}{\sqrt{x+3}}\)
chúc bạn học tốt
chú ý\(x=\sqrt{x}^2\) tương tự với y , và các số tự nhiên dương
\(A=\frac{\sqrt{x}^2+2\sqrt{x}-3}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)}=\sqrt{x}+3\)
\(B=\frac{\left(2\sqrt{y}\right)^2+3\sqrt{y}-7}{4\sqrt{y}+7}=\frac{\left(\sqrt{y}-1\right)\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}=\sqrt{y}-1\)
\(C=\frac{\sqrt{x}^2\sqrt{y}-\sqrt{y}^2\sqrt{x}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}\)
\(D=\frac{\sqrt{x}^2-3\sqrt{x}-4}{\sqrt{x}^2-\sqrt{x}-12}=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)}\)
\(E=\sqrt{1+2\sqrt{5}+5}+\sqrt{\sqrt{5}-2\sqrt{5}+1}=\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
=>\(E=1+\sqrt{5}+\sqrt{5}-1=2\sqrt{5}\)
CÂU CUỐI chưa làm đc
ý cuối cùng này :
\(D=\sqrt{13-4\sqrt{10}}+\sqrt{13+4\sqrt{10}}\)lấy bình phương 2 vế ta có
\(D^2=13-4\sqrt{10}+13+4\sqrt{10}+2\sqrt{13-4\sqrt{10}}\sqrt{13+4\sqrt{10}}\)
\(D^2=26+2\sqrt{13^2-16\sqrt{10}^2}\Leftrightarrow D^2=26+2\sqrt{9}\)
\(D^2=32\Leftrightarrow D=\sqrt{32}=4\sqrt{2}\)
Ta có: +) \(3=\left(\sqrt[3]{2}\right)^3+1^3=\left(\sqrt[3]{2}+1\right)\left(\sqrt[3]{4}-\sqrt[3]{2}+1\right)\Rightarrow\frac{1}{\sqrt[3]{4}-\sqrt[3]{2}+1}=\frac{\sqrt[3]{2}+1}{3}\)\(\Rightarrow\frac{3}{\sqrt[3]{4}-\sqrt[3]{2}+1}=\sqrt[3]{2}+1\)hay \(x=\sqrt[3]{2}+1\)
+) \(3=\left(\sqrt[3]{4}\right)^3-1^3=\left(\sqrt[3]{4}-1\right)\left(\sqrt[3]{16}+\sqrt[3]{4}+1\right)\)\(\Rightarrow\sqrt[3]{16}+\sqrt[3]{4}+1=\frac{3}{\sqrt[3]{4}-1}\Rightarrow4+\sqrt[3]{4}+\sqrt[3]{16}=\frac{3\sqrt[3]{4}}{\sqrt[3]{4}-1}\)\(\Rightarrow\frac{6}{4+\sqrt[3]{4}+\sqrt[3]{16}}=\frac{6\sqrt[3]{4}-6}{3\sqrt[3]{4}}=2-\frac{2}{\sqrt[3]{4}}=2-\sqrt[3]{2}\)hay \(y=2-\sqrt[3]{2}\)
Từ đó suy ra \(x+y=\sqrt[3]{2}+1+2-\sqrt[3]{2}=3\)là một số tự nhiên (đpcm)
Ta có: \(x=\frac{3\left(1+\sqrt[2]{2}\right)}{\left(\sqrt[3]{2^2}-\sqrt[3]{2}+1\right)\left(1+\sqrt[3]{2}\right)}=\frac{3\left(1+\sqrt[2]{2}\right)}{1+\left(\sqrt[3]{2}\right)^3}=1+\sqrt[2]{2}\)
\(y=\frac{6\left(2-\sqrt[3]{2}\right)}{\left(2^2+2\sqrt[3]{2}+\sqrt[3]{2^2}\right)\left(2-\sqrt[3]{2}\right)}=\frac{6\left(2-\sqrt[3]{2}\right)}{2^3-\left(\sqrt[3]{2}\right)^3}=2-\sqrt[3]{2}\)
Vậy x+y=1+\(\sqrt[3]{2}+2-\sqrt[3]{2}=3\)là 1 số tự
nhiên