Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(12=\sqrt{144}>\sqrt{135}\) nên \(x>0\)
Đặt \(a=\sqrt[3]{\dfrac{12+\sqrt{135}}{3}}+\sqrt[3]{\dfrac{12-\sqrt{135}}{3}}\) \(\Rightarrow x=\dfrac{1}{3}\left(a+1\right)\)
\(a^3=8+3\left(\sqrt[3]{\dfrac{12+\sqrt{135}}{3}}+\sqrt[3]{\dfrac{12-\sqrt{135}}{3}}\right)=8+3a\)
Ta có: \(x=\dfrac{1}{3}\left(a+1\right)\Rightarrow3x=a+1\Rightarrow9x^2=a^2+2a+1\)
Lại có: \(x^3=\dfrac{1}{27}\left(a+1\right)^3\Leftrightarrow9x^3=\dfrac{1}{3}\left(a^3+3a^2+3a+1\right)\)
\(\Leftrightarrow9x^3=\dfrac{1}{3}\left(8+3a+3a^2+3a+1\right)=a^2+2a+3\)
\(\Rightarrow M=\left(a^2+2a+3-a^2-2a-1-3\right)^2=\left(-1\right)^2=1\)
Đặt \(a=\sqrt[3]{\frac{12+\sqrt{135}}{3}}+\sqrt[3]{\frac{12-\sqrt{135}}{3}}\)
\(\Rightarrow a^3=\left(\sqrt[3]{4+\sqrt{15}}+\sqrt[3]{4-\sqrt{15}}\right)^3\)
Có (a+b)^3=a^3+b^3+3ab(a+b)
\(\Rightarrow a^3=4+\sqrt{15}+4-\sqrt{15}+3\sqrt[3]{\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}a\)
\(\Rightarrow a^3=8+3a\Rightarrow a^3-3a-8=0\)-> khó
Từ \(x=\frac{1}{3}\left(1+\sqrt[3]{\frac{12+\sqrt{135}}{3}}+\sqrt[3]{\frac{12-\sqrt{135}}{3}}\right)\)
\(\Rightarrow3x-1=\left(\sqrt[3]{\frac{12+\sqrt{135}}{3}}+\sqrt[3]{\frac{12-\sqrt{135}}{3}}\right)\)
\(\Leftrightarrow\left(3x-1\right)^3=\left(\sqrt[3]{\frac{12+\sqrt{135}}{3}}+\sqrt[3]{\frac{12-\sqrt{135}}{3}}\right)^3\)
\(\Rightarrow\left(3x-1\right)^3=8+3\left(3x+1\right)\)
\(\Leftrightarrow9x^3-9x^2-2=0\)
\(\Rightarrow M=-1\)
\(ĐKXĐ:x\ne1,x\ge0\)
\(Q=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
\(Q=\left[\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}-1}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}+\dfrac{8\sqrt{x}}{9x-1}\right]:\left(\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)
\(Q=\left(\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{9x-1}\right):\left(\dfrac{3}{3\sqrt{x}+1}\right)\)
\(Q=\dfrac{3x+2\sqrt{x}}{9x-1}:\dfrac{9\sqrt{x}-3}{9x-1}\)
\(Q=\dfrac{3x+3\sqrt{x}}{9x-1}.\dfrac{9x-1}{9\sqrt{x}-3}\)
\(Q=\dfrac{3x+3\sqrt{x}}{9\sqrt{x}-3}\)
\(Q=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)
b. Ta có: \(\sqrt{x}=\sqrt{6+2\sqrt{5}}=\sqrt{5+2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\).
\(\Rightarrow Q=\dfrac{6+2\sqrt{5}+\sqrt{5}+1}{3.\left(\sqrt{5}+1\right)-1}=\dfrac{7+3\sqrt{5}}{3\sqrt{5}+3-1}=\dfrac{7+3\sqrt{5}}{3\sqrt{5}+2}=\dfrac{31+15\sqrt{5}}{41}\)
a) ĐKXĐ: \(x\ge0;x\ne\dfrac{1}{9}\) , rút gọn: \(Q=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)=\left[\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\dfrac{3}{3\sqrt{x}+1}=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}=\dfrac{3x+3\sqrt{x}}{3\left(3\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(3\sqrt{x}-1\right)}=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)b) Thay x=\(6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\) vào Q, ta có: \(Q=\dfrac{6+2\sqrt{5}+\sqrt{\left(\sqrt{5}+1\right)^2}}{3\sqrt{\left(\sqrt{5}+1\right)^2}-1}=\dfrac{6+2\sqrt{5}+\sqrt{5}+1}{3\sqrt{5}+3-1}=\dfrac{3\sqrt{5}+7}{3\sqrt{5}+2}=\dfrac{\left(3\sqrt{5}+7\right)\left(3\sqrt{5}-2\right)}{\left(3\sqrt{5}+2\right)\left(3\sqrt{5}-2\right)}=\dfrac{45-6\sqrt{5}+21\sqrt{5}-14}{45-4}=\dfrac{31+15\sqrt{5}}{41}\)
2
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
A= \(\sqrt{9x^2-6x+1}+\sqrt{9x^2-12x+4}\)
A= \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-2\right)^2}=\left|3x-1\right|+\left|3x-2\right|\)
ta có |3x-1|+|3x-2|=|3x-1|+|2-3x| ≥ |3x-1+2-3x|=1
=> A ≥ 1
=> Min A =1 khi 1/3 ≤ x ≤ 2/3
\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)
\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)
\(\Leftrightarrow\sqrt{x}-2< 0\)
\(\Leftrightarrow x< 4\)
Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)
KL............
\(2.\) Tương tự bài 1.
\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)
\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)
Đặt \(a=\sqrt[3]{\dfrac{12+\sqrt{135}}{3}}+\sqrt[3]{\dfrac{12-\sqrt{135}}{3}}\) \(\Rightarrow x=\dfrac{1}{3}\left(a+1\right)\)
\(\Rightarrow3x=a+1\Rightarrow9x^2=a^2+2a+1\) (1)
\(x^3=\dfrac{1}{27}\left(a+1\right)^3=\dfrac{1}{27}\left(a^3+3a^2+3a+1\right)\)
Ta có:
\(a^3=\left(\sqrt[3]{\dfrac{12+\sqrt{135}}{3}}+\sqrt[3]{\dfrac{12-\sqrt{135}}{3}}\right)^3\)
\(\Rightarrow a^3=\dfrac{24}{3}+3\sqrt[3]{\dfrac{\left(12+\sqrt{135}\right)\left(12-\sqrt{135}\right)}{9}}.\left(\sqrt[3]{\dfrac{12+\sqrt{135}}{3}}+\sqrt[3]{\dfrac{12-\sqrt{135}}{3}}\right)\)
\(\Rightarrow a^3=8+3a\)
\(\Rightarrow x^3=\dfrac{1}{27}\left(8+3a+3a^2+3a+1\right)=\dfrac{1}{9}\left(a^2+2a+3\right)\)
\(\Rightarrow9x^3=a^2+2a+3\) (2)
Thay (1), (2) vào M ta được:
\(M=\left(9x^3-9x^2-3\right)^2=\left(a^2+2a+3-\left(a^2+2a+1\right)-3\right)^2\)
\(\Rightarrow M=\left(-1\right)^2=1\)