\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2016

Theo lời của bạn Dung, Ngọc bổ sung cho Vũ thêm cách nữa nhé :

Nếu đề tương tự như cách 1 mình làm thì ta có : 

\(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

\(\Leftrightarrow\left(a^2x^2+b^2y^2+c^2z^2\right)+a^2y^2+a^2z^2+b^2x^2+c^2x^2+b^2z^2+c^2y^2=\left(a^2x^2+b^2y^2+c^2z^2\right)+2\left(axby+bycz+czax\right)\)

\(\Leftrightarrow\left(a^2y^2-2aybx+b^2x^2\right)+\left(a^2z^2-2azcx+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)

\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)

Mà mỗi hạng tử ở vế phải luôn không âm, do vậy :

\(\hept{\begin{cases}ay-bx=0\\az-cx=0\\bz-cy=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{a}{x}=\frac{c}{z}\\\frac{b}{y}=\frac{c}{z}\end{cases}}\) \(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

9 tháng 12 2016

khó quá trời đất ơi!

21 tháng 9 2018

giúp mình nhé các bạn

16 tháng 8 2017

Ờm thì đại khái như vầy , dùng thêm hằng cao cấp mới chơi được =))

Link : Bảy hằng đẳng thức đáng nhớ – Wikipedia tiếng Việt 

Dùng hằng mở rộng số 4

Ta có :

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\) (1)

Lại có :

\(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1^2=1\) (chỗ này dùng cái skill mở rộng) 

<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xyc}{abc}+\frac{ayz}{abc}+\frac{bzx}{abc}\right)=1\)

<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{ayz+bxz+cxy}{abc}=1\)

Thay 1 vào 

=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=1\)

16 tháng 8 2017

mình giải hơi khác 1 chút, nhưng thôi cx đc