Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ pt ta được A=10cm; ω=2π(rad/s)
=>vmax=ωA=20π (cm/s)=v1 <=>x1=A=10cm
Từ hệ thức độc lập \(\frac {x^2} {A^2}+\frac {v^2} {A^2ω^2}=1<=>x^2+\frac {v^2} {ω^2}=A^2 <=>x=\sqrt {A^2-\frac {v^2} {ω^2}}\)
\(<=>x_2=\sqrt {A^2-\frac {v_2^2} {ω^2}}=5\sqrt3cm\)
Bạn có thể tìm x2 dựa vào tính chất đặc biệt của v là:
Vì \(\frac {v_2} {v_{max}}=\frac 1 2 <=>v_2=\frac {v_{max}} 2\)
Khi đó \(x_2=\frac {A\sqrt3} {2}\)(nửa căn 3 dương)=5\(\sqrt3\)cm
Bước sóng: \(\lambda=\frac{v}{f}=\frac{20}{5}=4cm\)
Phương trình sóng do S1 truyền đến M: \(u_{M1}=2\cos\left(10\pi t-\frac{2\pi d_1}{\lambda}\right)=2\cos\left(10\pi t-\frac{2\pi.10}{4}\right)=2\cos\left(10\pi t-5\pi\right)\)
Phương trình sóng do S2 truyền đến M: \(u_{M2}=2\cos\left(10\pi t-\frac{2\pi d_2}{\lambda}\right)=2\cos\left(10\pi t-\frac{2\pi.6}{4}\right)=2\cos\left(10\pi t-3\pi\right)\)
Phương trình sóng tại M: \(u_M=u_{M1}+u_{M2}=2\cos\left(10\pi t-5\pi\right)+2\cos\left(10\pi t-3\pi\right)=4.\cos\pi.\cos\left(10\pi t-4\pi\right)=4.\cos\left(10\pi t-3\pi\right)\)(cm)
\(Z_L=\omega.L=50\Omega\)
Có: \(U=I.Z_L=50.I\)
Vì mạch chỉ có cuộn cảm thuần L nên u vuông pha với i
\(\Rightarrow (\dfrac{u}{U_0})^2+(\dfrac{i}{I_0})^2=1\)
\( \Rightarrow (\dfrac{200}{U_0})^2+(\dfrac{3}{I_0})^2=1\)
\( \Rightarrow (\dfrac{200}{50.I_0})^2+(\dfrac{3}{I_0})^2=1\)
\(\Rightarrow I_0=5A\)
\(\varphi_i=\varphi_u+\dfrac{\pi}{2}=\dfrac{5\pi}{6}(rad)\)
\(\Rightarrow i = 5\cos(100\pi t + \dfrac{5\pi}{6})\) A
Vật ở VTCB khi: \(\cos(\omega t + \varphi)=0\)
\(\Rightarrow \omega t + \varphi = \dfrac{\pi}{2}+k\pi\) (k nguyên)
Chọn A
Ta có: \(Z_C=\frac{1}{C\omega}=30\Omega\)
\(\tan\varphi=-\frac{Z_c}{R}=-\frac{1}{\sqrt{3}}\)
\(\Rightarrow\varphi=-\frac{\pi}{6}\)
\(\Rightarrow\varphi_U-\varphi_I=-\frac{\pi}{6}\Rightarrow\varphi_1=\frac{\pi}{6}rad\)
Lại có: \(I=\frac{U}{Z}=2\sqrt{2}\left(A\right)\)
\(\Rightarrow i=2\sqrt{2}\cos\left(100\pi t+\frac{\pi}{6}\right)\left(A\right)\)
Đáp án A
Bài này gia tốc phải là: \(a=-4\sqrt 2(m/s^2)=-400\sqrt 2(cm/s^2)\)
PT dao động: \(x=A\cos\Phi\) (với \(\Phi\) là pha của dao động)
Suy ra gia tốc: \(a=-\omega^2x = -\omega^2.A\cos\Phi\)
Thay vào ta có:
\(-400\sqrt 2=-\omega^2.5.\cos\dfrac{\pi}{4}\)
\(\Rightarrow \omega = 4\pi(rad/s)\)
Chu kì: \(T=2\pi/\omega=0,5s\)