\(\in\)N* thỏa mãn \(x+3=2^a\)và 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

Vì \(x\inℕ^∗\)nên \(x\ge1\)

\(\Rightarrow2x\ge2\Leftrightarrow3x+1\ge x+3\)

\(\Rightarrow4^b>2^a\Rightarrow4^b⋮2^a\)

\(\Rightarrow3x+1⋮x+3\)

\(\Rightarrow3\left(x+3\right)-8⋮x+3\)

Mà \(3\left(x+3\right)⋮x+3\)nên \(8⋮x+3\)

\(\Rightarrow x+3\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Mà \(x+3\ge4\)(do x nguyên dương) nên \(x+3\in\left\{4;8\right\}\)

+) Xét x + 3 = 4 \(\Leftrightarrow2^a=4\Leftrightarrow a=2\)

\(x+3=4\Rightarrow x=1\Rightarrow3x+1=4=4^b\Rightarrow b=1\)

+) Xét x + 3 = 8 \(\Leftrightarrow2^a=8\Leftrightarrow a=3\)

\(x+3=8\Rightarrow x=5\Rightarrow3x+1=16=4^b\Rightarrow b=2\)

Vậy ta tìm được bộ ba số (a;b;x) thỏa mãn là \(\left(2;1;1\right);\left(3;2;5\right)\)

18 tháng 12 2016

Ta có:\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c},c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(T/C)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)

23 tháng 6 2019

a, Với x = 1 thì \(A=\frac{3x+2}{x-3}=\frac{3\cdot1+2}{1-3}=\frac{5}{-2}=\frac{-5}{2}\)

Với x = 2 thì \(A=\frac{3x+2}{x-3}=\frac{3\cdot2+2}{2-3}=\frac{8}{-1}=-\frac{8}{1}=-8\)

Với x =\(\frac{5}{2}\)thì : \(A=\frac{3x+2}{x-3}=\frac{3\cdot\frac{5}{2}+2}{\frac{5}{2}-3}=\frac{\frac{15}{2}+2}{\frac{5}{2}-3}=\frac{\frac{19}{2}}{-\frac{1}{2}}=\frac{19}{2}\cdot(-2)=\frac{19}{1}\cdot(-1)=-19\)

b, Ta có : \(\frac{3x+2}{x-3}=\frac{3x-9+11}{x-3}=\frac{3(x-3)+11}{x-3}=3+\frac{11}{x-3}\)

\(\Leftrightarrow11⋮x-3\Leftrightarrow x-3\inƯ(11)=\left\{\pm1;\pm11\right\}\)

Lập bảng :

x - 31-111-11
x4214-8

c,Để suy nghĩ đã

23 tháng 6 2019

Làm tiếp :v

c, \(B=\frac{x^2+3x-7}{x+3}=\frac{x(x+3)-7}{x+3}=x-\frac{7}{x+3}\)

\(\Rightarrow7⋮x+3\Leftrightarrow x+3\inƯ(7)=\left\{\pm1;\pm7\right\}\)

Lập bảng :

x + 31-17-7
x-2-44-10

d, Tương tự

1) cho a,b,c là 3 số thực khác 0 thỏa mãn a+b-c/c=b+c-a/a=c+a-b/bhãy tính B= (1+b/a)(1+a/c)(1+c/b)2) CHo 2 số a, b thỏ mã a+3b= 0. tính giá trị M = \(\frac{2a+b}{a-b}=\frac{2a-b}{a+2b}\)3) Cmr b= \(2x^2-12xy+5y^2\) và c= \(-x-4y^2+12xy\) ko cùng nhận giá trị âm4) CHo p/s : d= \(\frac{n^2+3n-21}{2-n}\)a) tính d biết \(n^2-3n=0\)b) Tìm tất cả giá trị của n để d nguyên5)Tìm các số nguyên m thỏa mãn (5-m)(2m-1)>06)Tìm x,y...
Đọc tiếp

1) cho a,b,c là 3 số thực khác 0 thỏa mãn a+b-c/c=b+c-a/a=c+a-b/b
hãy tính B= (1+b/a)(1+a/c)(1+c/b)
2) CHo 2 số a, b thỏ mã a+3b= 0. tính giá trị M = \(\frac{2a+b}{a-b}=\frac{2a-b}{a+2b}\)
3) Cmr b= \(2x^2-12xy+5y^2\) và c= \(-x-4y^2+12xy\) ko cùng nhận giá trị âm
4) CHo p/s : d= \(\frac{n^2+3n-21}{2-n}\)
a) tính d biết \(n^2-3n=0\)
b) Tìm tất cả giá trị của n để d nguyên
5)Tìm các số nguyên m thỏa mãn (5-m)(2m-1)>0
6)Tìm x,y để \(\left(x^3-4x\right)^2+3x^2.|y-3|=0\)
7)Cho \(\frac{a}{b}=\frac{c}{d}\)cmr \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
8)\(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}\) và 10x-3y-2z=-4
9)Cho tỷ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Cmr (a+2c)(b+d)=(a+c)(b+2d)
10)Cho x,y,z là cá số khác 0 và \(x^2=yz,y^2=xz,z^2=xy\). Cmr x=y=z
11)Tìm x biết \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)

0
22 tháng 8 2019

Làm câu a,b thôi nha !

a)Tính A khi x=1;x=2;x=5/2

x=1

Thay x vào biểu thức A, ta có:

\(\frac{3.x+2}{1-3}=-\frac{5}{2}\)

x=2

Thay x vào biểu thức A ta có:

\(\frac{3.2+2}{2-3}=-\frac{8}{1}=-8\)

x=5/2

Thay x vào biểu thức A ta có:

\(\frac{3.0,4+2}{0,4-3}=\frac{3,2}{-2,6}=\frac{16}{13}\)

b)Tìm x thuộc Z để A là số nguyên:

\(A=\frac{3x+2}{x-3}\)

Để A là số nguyên thì:

=>\(3x+2⋮x-3\)

\(\Rightarrow3x-9+11⋮x-3\)

\(\Rightarrow3\left(x-3\right)+11⋮x-3\)

\(\Rightarrow11⋮x-3\)

\(\Rightarrow x-3\inƯ\left(11\right)=\left\{1;11\right\}\)

Xét trường hợp

\(\orbr{\begin{cases}x-3=1\\x-3=11\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1+3=4\\x=11+3=14\end{cases}}\)

Vậy A là số nguyên thì

\(x\inƯ\left(4;14\right)\)

Các bài còn lại làm tương tự !

12 tháng 5 2018

a/ \(|5x-3|< 2\)                        b/ \(|3x+1>4|\)                             c/ \(|4-x|+2x=3\)

\(\Leftrightarrow5x-3< 2\)                          \(\Leftrightarrow3x+1>4\)                            \(\Leftrightarrow4-x+2x=3\)

 \(\Leftrightarrow5x< 5\)                                  \(\Leftrightarrow3x>3\)                                      \(\Leftrightarrow x=-1\)

 \(\Leftrightarrow x< 1\)                                     \(\Leftrightarrow x>1\)

12 tháng 5 2018

\(a,\left|5x-3\right|< 2\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|5x-3\right|=1\\\left|5x-3\right|=0\end{cases}}\)

\(TH1:\)\(\)

\(\left|5x-3\right|=1\)

\(\Leftrightarrow\orbr{\begin{cases}5x-3=1\\5x-3=-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x=1+3\\5x=-1+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x=4\\5x=2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{5}\left(\text{loại}\right)\\x=\frac{2}{5}\left(\text{loại}\right)\end{cases}}\)

\(TH2:\)

\(\left|5x-3\right|=0\)

\(\Leftrightarrow5x-3=0\)

\(\Leftrightarrow5x=0+3\)

\(\Leftrightarrow5x=3\)

\(\Leftrightarrow x=\frac{3}{5}\left(\text{loại}\right)\)

\(\text{Vậy : không tồn tại x cần tìm.}\)

\(b,\left|3x+1\right|>4\)

\(\Leftrightarrow\orbr{\begin{cases}3x+1>4\\3x+1< -4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x>4-1\\3x< -4-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x>3\\3x< -5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x>3\div3\\x< -5\div3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x>1\\x< \frac{-5}{3}\end{cases}}\)

\(\text{Vậy : }\)\(x>1\)\(\text{hoặc}\)\(x< \frac{-5}{3}\)

\(\)