\(x^5+y^5=x^3+y^3\)

Chứng minh rằng \(x^2+y^2\le1+xy\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

biến đổi tương đương
+ cm bđt phụ

2 tháng 8 2016

có thể rõ hơn không

6 tháng 4 2020

Áp dụng bất đẳng thức Cô - si, ta có :

\(VT=\frac{1}{x^2+xy}+\frac{1}{y^2+xy}=\frac{1}{x^2+xy}+4\left(x^2+xy\right)+\frac{1}{y^2+xy}+4\left(y^2+xy\right)-4\left(x+y\right)^2\)

\(VT\ge2\sqrt{\frac{1}{x^2+xy}.4\left(x^2+xy\right)}+2\sqrt{\frac{1}{y^2+xy}+4\left(y^2+xy\right)}-4=4\)

=> đpcm

7 tháng 3 2020

Với \(0\le x;y\le1\) ta có:

\(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\ge\frac{x}{\sqrt{1+3}}+\frac{y}{\sqrt{1+3}}=\frac{x+y}{2}\)

Dấu "=" xảy ra <=> x = y = 1

Có: \(0\le x;y\le1\)

=> \(0\le x^2\le x\le1;0\le y^2\le y\le1\)

\(\left(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\right)^2\le2\left(\frac{x^2}{y+3}+\frac{y^2}{x+3}\right)\le2\left(\frac{x}{x+y+2}+\frac{y}{x+y+2}\right)\)

\(=2\left(\frac{x+y+2}{x+y+2}-\frac{2}{x+y+2}\right)\le2\left(1-\frac{2}{1+1+2}\right)=1\)

=> \(\sqrt{\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}}\le1\)

Dấu "=" xảy ra x<=>  = y =1

AH
Akai Haruma
Giáo viên
8 tháng 9 2017

Lời giải:

Đặt \((x+y+z,xy+yz+xz)=(a,b)\). Bài toán trở thành:

Cho \(a,b\in\mathbb{R}|a+b=5\).CMR: \(a^2-2b\geq 3\)

----------------------------------------------------------------

Với mọi \(x,y,z\in\mathbb{R}\Rightarrow x^2+y^2+z^2\geq xy+yz+xz\)

BĐT đúng vì tương đương với \((x-y)^2+(y-z)^2+(z-x)^2\geq 0\)

Suy ra \((x+y+z)^2\geq 3(xy+yz+xz)\Leftrightarrow a^2\geq 3b\)

Bây giờ, thử \(a^2-2b=3\)

Giải HPT \(\left\{\begin{matrix} a+b=5\\ a^2-2b=3\end{matrix}\right.\Rightarrow \) \(\left\{\begin{matrix} a=-1-\sqrt{14}\\ b=6+\sqrt{14}\end{matrix}\right.\Rightarrow a^2<3b\) (vô lý)

Thử \(a^2-2b=4\)

Giải HPT suy ra \(\left\{\begin{matrix} a=-1-\sqrt{15}\\ b=6+\sqrt{15}\end{matrix}\right.\Rightarrow a^2<3b\) (vô lý)

Vậy kết luận là đề bài sai.

NV
15 tháng 4 2019

\(VT=\sum\frac{x}{x+\sqrt{\left(xy+xz+yz\right)x+yz}}=\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}=\sum\frac{x}{x+\sqrt{\left(\sqrt{x}^2+\sqrt{y}^2\right)\left(\sqrt{z}^2+\sqrt{x}^2\right)}}\)

\(\Rightarrow VT\le\sum\frac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{yz}\right)^2}}=\sum\frac{x}{x+\sqrt{xz}+\sqrt{yz}}=\sum\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)