K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2017

chia hết cho x^2-4 => x=+-2 là gnhieemj

16+2a+b=0

16-2a+b=0

trừ cho nhau

4a=0=> a=0

=> b=-16

A+b=-16

2 tháng 3 2017

Bn có thể giảng lại cho mk được ko

18 tháng 1 2019

Giả sử \(2x^2+ax-4\)chia cho x + 4 = \(Q\left(x\right)\)

\(\Rightarrow2x^2+ax-4=\left(x+4\right)Q\left(x\right)\)

Vì đẳng thức trên đúng với mọi x thuộc R

=> Với x = -4

\(\Rightarrow2\left(-4\right)^2+a\left(-4\right)-4=0\)

\(\Rightarrow32-4a-4=0\)

\(\Rightarrow28=4a\Leftrightarrow a=7\)

Các bài khác tương tự thôi 

18 tháng 1 2019

b/ Gọi thương của phép chia \(\left(x^3+ax^2+5x+3\right)\)cho \(\left(x^2+2x+3\right)\)là \(Q_{\left(x\right)}\)

=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)Q_{\left(x\right)}\)

=> Q(x) có bậc 1

=> \(Q_{\left(x\right)}=bx+c\)

=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)\left(bx+c\right)\)

=> \(x^3+ax^2+5x+3=bx^3+2bx^2+3bx+cx^2+2cx+3c\)

=> \(x^3+ax^2+5x+3=bx^3+\left(2b+c\right)x^2+\left(3b+2c\right)x+3c\)

Ta có \(\hept{\begin{cases}x^3=bx^3\\3c=3\end{cases}}\)=> \(\hept{\begin{cases}b=1\\c=1\end{cases}}\)

=> \(x^3+ax^2+5x+3=x^3+3x^2+5x+3\)

Đồng nhất hệ số => a = 3

4 tháng 9 2019

Ta có x+y +z =0 =>x^2 =(y+z)^2 ;y^2=(x+z)^2;z^2=(y+x)^2

=>ax^2+by^2+cz^2=a(y+z)^2+b(x+z)^2+c(y+x)^2

=>(b+c)x^2+(a+c)y^2+(a+b)z^2+2(ayz+bxz+cyz)             (1)

Tu a+b+c=0=>-a=b+c;-b=a+c;-c=a+b                    (2)

Tu a/x+b/y+c/x =0=>ayz+bxz+cxy/xyz=0=>ayz+bxz+cxy = 0                   (3)

Thay (2) va (3 ) va (1) ta dc :ax^2+by^2+cz^2=-(ax^2+by^2+cz^2)=>ax^2+by^2+cz^2=0

(Hai số đối nhau mà bằng nhau chỉ có số 0)

4 tháng 9 2019

Bạn tham khảo tại đây:

Câu hỏi của Son go Ku - Toán lớp 8 - Học toán với OnlineMath

Bấm vô dòng màu xanh:v

18 tháng 9 2017

Thực hiện phép chia đa thức A = x4 + x3 + ax2 + (a + b)x + 2b + 1 cho đa thức B = x3 + ax + b ta được kết quả b + 1

Để đa thức A chia hết cho đa thức B thì b + 1 = 0

=> b = -1

=> x4 + x3 + ax2 + (a + b)x + 2b + 1 = 0

=> x4 + x3 + ax2 - ax - 2 + 1 = 0

=> x4 + x3 + ax2 - ax - 1 = 0

=> x3 ( x + 1 ) - ax ( x + 1 ) - 1 = 0

=> ( x3 - ax ) ( x + 1 ) - 1 = 0

=> ( x3 - ax ) ( x + 1 ) = 1

=> TH1: \(\left\{{}\begin{matrix}x^3-ax=-1\\x+1=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^3-ax=-1\\x=-2\end{matrix}\right.\)

\(\Rightarrow2a=-9\Rightarrow a=-4,5\)

=> TH2: \(\left\{{}\begin{matrix}x^3-ax=1\\x+1=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^3-ax=1\\x=0\end{matrix}\right.\)

\(\Rightarrow a\in\varnothing\)

Vậy a = -4,5 và b = -1

5 tháng 11 2019

Đa thức \(x^2-1\)có nghiệm\(\Leftrightarrow x^2-1=0\Leftrightarrow x=\pm1\)

-1 và 1 là hai nghiệm của đa thức \(x^2-1\)

Để đa thức x4+ax2+bx-1 chia hết cho x2-1 thì -1 và 1 cũng là hai nghiệm của đa thức x4+ax2+bx-1

Nếu x = 1 thì \(1+a+b-1=0\Leftrightarrow a+b=0\)(1)

Nếu x = -1 thì \(1+a-b-1=0\Leftrightarrow a-b=0\)(2)

Từ (1) và (2) suy ra \(a=b=0\)

Vậy a = b = 0

5 tháng 11 2019

b)  x^2+2x-2 x^3+ax+b x-2 x^3+2x^2-2x -2x^2+ax+b -2x^2-4x+4 (a+4)x+(b-4)

Để x3+ax+b chia hết cho  x2+2x-2 thì \(\left(a+4\right)x+\left(b-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a+4=0\\b-4=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=-4\\b=4\end{cases}}\)

Vậy a = -4; b = 4