Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : C(x) = P(x) + H(x)
=> C(x) = 4x2 - 1 + x4 + 3
=> C(x) = x4 + 4x2 + 2
Mà x4 \(\ge0\forall x\)
4x2 \(\ge0\forall x\)
Nên C(x) = x4 + 4x2 + 2 \(\ge2\forall x\)
=> C(x) = x4 + 4x2 + 2 \(\ne0\forall x\)
Vậy đa thức C(x) vô nhiệm
Áp dụng hằng đẳng thức đáng nhớ ta có :
x4+2x2+1=(x2+1)2
Ta có : (x2+1)2 luôn luôn lớn hơn hoặc bằng 0
=>PT trên vô nghiệm
Theo hằng đẳng thức đáng nhớ , ta có :
\(x^4+2x^2+1=\left(x^2+1\right)^2\)
Vì \(x^2\ge0\).Nên \(x^2+1\ge1;\Rightarrow x^2+1>0\)
\(\Rightarrow\left(x^2+1\right)^2>0\)
Vậy phương trình vô nghiệm.
a.Ta có : \(^{x^2}\)\(\ge\)0\(\forall x\)
\(\Leftrightarrow x^2+3\ge3\forall x\)
\(\Rightarrow\)Đa thức trên vô nghiệm
a, x^2 + 3
có x^2 > 0 => x^2 + 3 > 3
=> đa thứ trên vô nghiệm
b, x^4 + 2x^2 + 1
x^4 > 0 ; 2x^2 > 0
=> x^4 + 2x^2 > 0
=> x^4 + 2x^2 + 1 > 1
vậy _
c, -4 - 3x^2
= -(4 + 3x^2)
3x^2 > 0 => 3x^2 + 4 > 4
=> -(4 + 3x^2) < 4
vậy_
\(=\left(x^4+x^3+x^2\right)+\left(3x^2+3x+3\right)=x^2\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)
\(=\left(x^2+3\right)\left(x^2+x+1\right)=\left(x^2+3\right)\left(x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
\(=\left(x^2+3\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
vì \(x^2>=0;3>0\Rightarrow x^2+3>0\)
\(\left(x+\frac{1}{2}\right)^2>=0;\frac{3}{4}>0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\left(x^2+3\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)>0\Rightarrow\)đa thức trên vô nghiệm
lop 7 co hoc tim nghiem a (nghiem la gia tri cua bien de da thuc do nhan gia tri la 0)
P(x)=...
vì 3x^4>=0; (1/2)x^2>=0
100>=
suy ra P(x) > 0 (luon dung voi x thuoc so thuc) <=> vo nghiem
F(x)=x^2-2x+2012
<=> F(x)=x^2-2x+1+2011
<=> F(x)=(x-1)^2+2011
vi (x-1)^2>=0 voi moi x thuoc so thuc
suy ra F(x)>0 voi moi x thuoc so thuc <=> vo nghiem
\(\hept{\begin{cases}x^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\)\(\Rightarrow x^2+\left(x-1\right)^2\ge0\)
Dấu "=" khi: \(\hept{\begin{cases}x^2=0\\\left(x-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)(Điều này vô lý)
Vậy dấu "=" không thể xảy ra hay đa thức đã cho không nhận giá trị bằng 0 (vô nghiệm)
\(x^2+\left(x-1\right)^2\)
\(\hept{\begin{cases}x^2\ge0\forall x\\\left(x-1\right)^2\ge0\forall x\end{cases}\Rightarrow}x^2+\left(x-1\right)^2\ge0\forall x\)
=> Vô nghiệm ( đpcm )
liink:https://olm.vn/hoi-dap/question/675093.html
\(\left(x-4\right)^2+\left(x+5\right)^2\)
Nếu đa thức trên có nghiệm là n
\(\Leftrightarrow\left(n-4\right)^2+\left(n+5\right)^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(n-4\right)^2=0\\\left(n+5\right)^2=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}n-4=0\\n+5=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}n=4\\n=-5\end{array}\right.\) vô lí
Vậy đa thức trên không có nghiệm
:>> sáng hnay lm, cô ns : đây là cách giải lp ... cao hơn, nó cx nằm trog phần nâng cao lp 7
=>> cô ns : Giair đc thì càng tốt chứ sao (kaka)
\(-x^4-x^2-1=0\)
Đặt \(x^2=t\left(t\ge0\right)\)
Suy ra : \(-t^2-t-1=0\)
Ta có : \(\left(-1\right)^2-4.\left(-1\right).\left(-1\right)=-3< 0\)
Vậy phương trình vô nghiệm
nâng cao lớp 7 ? rõ ràng đó là delta của lớp 9 =)) không có ý cà khịa :D
\(-x^4-x^2-1=\left(-x^4\right)+\left(-x^2\right)+\left(-1\right)\)
ta có : \(-x^4\le0\);\(-x^2\le0\);\(-1< 0\)
suy ra \(-x^4+\left(-x^2\right)+\left(-1\right)< 0\)
nên đa thức sau vô nghiệm