Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{ Ta có:}13B=\left(4x^2+y^2\right)\left(4+9\right)\ge\left(2.2x+1.3y\right)^2=\left(4x+3y\right)^2=1\Rightarrow B_{min}=\frac{1}{13}\)
\(\text{Dấu "=" xảy ra khi:}x=\frac{1}{13};y=\frac{3}{13}\)
Áp dụng BĐT Bunhiacopxki, ta được :
\(\left(4x^2+y^2\right)\left(2^2+3^2\right)=\left[\left(2x\right)^2+y^2\right].\left(2^2+3^2\right)\ge\left[\left(2x\right).2+y.3\right]^2=\left(4x+3y\right)^2\)
\(\Leftrightarrow\left(4x^2+y^2\right)\cdot13\ge1\)
\(\Leftrightarrow4x^2+y^2\ge\frac{1}{13}\)
hay \(B\ge\frac{1}{13}\)
Có: \(x,y\ge1\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\)
\(\Leftrightarrow xy-x-y+1\ge0\Leftrightarrow xy\ge x+y-1\)
Có: \(0\le a\le1\Rightarrow a\left(a-1\right)\le0\Leftrightarrow a^2\le a\)
Khi đó: \(M=a^2+b^2+c^2+x^2+y^2+x^2\)
\(\le a+b+c+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\)
\(\le a+b+c+6\left(x+y+z\right)-2\left[2\left(x+y+z\right)-3\right]\)
\(=6-\left(x+y+z\right)+2\left(x+y+z\right)+6\)
\(=\left(x+y+z\right)+12\le6+12=18\)
Dấu "=" xảy ra khi và chỉ khi a=b=c=0; x=y=1; z=4
a/ giá trị nhỏ nhất của A là 2
b/ giá trị lớn nhất của B là 51
tớ chỉ có bài tham khảo trên mạng thôi bạn thông cảm
Ta có: x + y = 1
<=> (x + y)3 = 1
<=> x3 + y3 + 3xy(x + y) = 1
<=> x3 + y3 + 3xy = 1 (do x + y = 1)
<=> x3 + y3 = 1 - 3xy
Áp dụng BĐT Cô - si, ta có:
xy >= (x+y)24=14(x+y)24=14
<=> -3xy≥−34≥−34
Ta có x3 + y3 = 1 - 3xy ≥1−34=14≥1−34=14
Dấu "=" xảy ra khi x = y = 1212
Vậy GTNN của x3 + y3 là 1414khi x = y = 12
\(1,a,A=x^2-6x+25\)
\(=x^2-2.x.3+9-9+25\)
\(=\left(x-3\right)^2+16\)
Ta có :
\(\left(x-3\right)^2\ge0\)Với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
Hay \(A\ge16\)
\(\Rightarrow A_{min}=16\)
\(\Leftrightarrow x=3\)
\(2=x+y\ge2\sqrt{xy}\)(cô - si)
\(\Rightarrow\sqrt{xy}\le1\Rightarrow xy\le1\)
Ta có \(S=x^2+y^2=\left(x+y\right)^2-2xy\)
\(=4-2xy\ge4-2=2\)
Dấu "=" khi x = y = 1
Ta có: \(\left(x-y\right)^2\ge0\)\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow x^2+y^2\ge2xy\)\(\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+y^2+2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
Thay \(x+y=2\)vào bất phương trình ta được:\(x^2+y^2\ge\frac{2^2}{2}=\frac{4}{2}=2\)
Dấu " = " xảy ra \(\Leftrightarrow x-y=0\)\(\Leftrightarrow x=y\)
mà \(x+y=2\)\(\Rightarrow x=y=1\)
Vậy \(minS=2\)\(\Leftrightarrow x=y=1\)
Ta có: \(x\ge3y-1\) (gt).
\(\Rightarrow A=x^2+y^2\ge\left(3y-1\right)^2+y^2=9y^2-6y+1+y^2=10y^2-6y+1=10\left(y-\frac{3}{10}\right)^2+\frac{1}{10}\)
\(\Rightarrow A\ge\frac{1}{10}\Rightarrow GTNN\left(A\right)=10\)
Dấu "=" xảy ra khi \(y=\frac{3}{10};x=\frac{1}{10}\).
Sửa giùm mình lại chỗ: \(x\ge1-3y\) nha, mình viết nhầm.