Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(x+3y)(x2-3xy+9y2)=x3+27y3
b)(2x-3y)(4x2+6xy+9y2)=8x3-27y3
1.
\(x^2-22x+12\) : biểu thức không phân tích được thành nhân tử nữa.
2.
\(9x^2+6x+1=(3x)^2+2.3x.1+1^2=(3x+1)^2\)
3.
\(x^2-10x+2\): không p. tích được thành nhân tử.
4.
\(x^3+1=x^3+1^3=(x+1)(x^2-x+1)\)
5.
\(8x^3-27y^3=(2x)^3-(3y)^3=(2x-3y)[(2x)^2+(2x)(3y)+(3y)^2]\)
\(=(2x-3y)(4x^2+6xy+9y^2)\)
6.
\((x+3y)^2-(3y+1)^2=[(x+3y)-(3y+1)][(x+3y)+(3y+1)]\)
\(=(x-1)(x+6y+1)\)
7.
\(4y^2-36x^2=(2y)^2-(6x)^2=(2y-6x)(2y+6x)=4(y-3x)(y+3x)\)
8.
\(27-(x+4)^3=3^3-(x+4)^3=[3-(x+4)][3^2+3(x+4)+(x+4)^2]\)
\(=-(x+1)(37+x^2+11x)\)
9.
\(25x^2-10xy+y^2=(5x)^2-2.5x.y+y^2=(5x-y)^2\)
10.
\(9x^6-12x^7+4x^8=x^6(9-12x+4x^2)=x^6[3^2-2.3.2x+(2x)^2]\)
\(=x^6(3-2x)^2\)
Bài 1 : Khai triển :
a, \(\left(x+5\right)^2=x^2+10x+25\)
b, \(\left(x-3y\right)^2=x^2-6xy+9y^2\)
c, \(\left(x^2-6z\right)\left(x^2+6z\right)=x^4-36z^2\)
d, \(\left(x+3y\right)^3=x^3+9x^2y+27xy^2+27y^3\)
e, \(27x^3-9y^2+y-\frac{1}{27}=\left(3x-\frac{1}{3}\right)^3\)
g, \(8x^6+12x^4y+6x^2y^2+y^3=\left(2x^2+y\right)\)
h, \(4x^2+12x^4y+6x^22y^2+y^3=\left(\sqrt[3]{4x^2}+y\right)\)
a) Ta có: \(x^3+12x^2+48x+64\)
\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3\)
\(=\left(x+4\right)^3\)
b) Ta có: \(x^3-12x^2+48x-64\)
\(=x^3-3\cdot x^2\cdot4+3\cdot x\cdot4^2-4^3\)
\(=\left(x-4\right)^3\)
c) Ta có: \(8x^3+12x^2y+6xy^2+y^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\)
\(=\left(2x+y\right)^3\)
d)Sửa đề: \(x^3-3x^2+3x-1\)
Ta có: \(x^3-3x^2+3x-1\)
\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)
\(=\left(x-1\right)^3\)
e) Ta có: \(8-12x+6x^2-x^3\)
\(=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3\)
\(=\left(2-x\right)^3\)
f) Ta có: \(-27y^3+9y^2-y+\frac{1}{27}\)
\(=\left(\frac{1}{3}\right)^3+3\cdot\left(\frac{1}{3}\right)^2\cdot\left(-3y\right)+3\cdot\frac{1}{3}\cdot\left(-3y\right)^{^2}+\left(-3y\right)^3\)
\(=\left(\frac{1}{3}-3y\right)^3\)
P/s câu sau nha
9xy+3x+3y=51 (x, y thuộc Z; x, y>0)
<=> 9xy+3x+3y+1=52
<=> 3x(3y+1)+(3y+1)=52
<=> (3y+1)(3x+1)=52=13.4=26.2=1.52
Vif x, y >0 => (3y+1)>1 và (3x+1) >1
TH1: 3y+1 =13 và 3x+1=4 => y=4 và x=1 (nhận)
TH2: 3y +1 =26 và 3x+1=2 => y=25/3 và x=1/3 (loại)
Với x, y có thể đổi chỗ cho nhau trong phương trình trên.
Vậy (x;y)=(1;4) và (4;1)
a) Biến đổi đẳng thức đã cho về dạng ( x = y + 1 ) ( x - y - 1 ) = 12 sau đó bạn lập luận x+y+1>x-y-1 và x + y + 1 và x - y - 1 là các ước của 12 rồi bạn tự làm tiếp các trường hợp
\(x^3+27y^3=1-9xy\left(x+3y\right)\)
<=> \(x^3+27y^3+9xy\left(x+3y\right)=1\)
<=> \(\left(x+3y\right)^3=1\)
<=> \(x+3y=1\)
Vậy \(M=1\)
\(x^3+27x^3=1-9xy\left(x+3y\right)\))
\(=\left(x+3y\right)\left(x^2-3xy+9y^2\right)=1-9xy\left(x+3y\right)\)
=\(\left(x+3y\right)\left(x^2-3xy+9y^2\right)-1+9xy\left(x+3y\right)=0\)
=\(\left(x+3y\right)\left(x^2-3xy+9y^2+9xy\right)-1=0\)
=\(\left(x+3y\right)\left(x^2+6xy+9y^2\right)-1=0\)
=\(\left(x+3y\right)\left(x+3y\right)^2-1=0\)
=\(\left(x+3y\right)\left(x+3y\right)^2=1\)
\(\Rightarrow x+3y=\left(x+3y\right)^2=1\)
\(\Rightarrow x+3y=1\)