Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không mất tính tổng quát giả sử y nằm giữa x và z
=> x(y - z)(y - x) ≤ 0
hay xy2 + zx2 ≤ x2y + xyz
Ta cần chứng minh: x2y + yz2 ≤ 2.
Ta có: x2 + y2 + z2 = 3
<=> x2 + z2 = 3 - y2.
Ta có: \(x^2y+yz^2\le2\Leftrightarrow y\left(x^2+z^2\right)\le2\)
\(\Leftrightarrow y\left(3-y^2\right)\le2\)
\(\Leftrightarrow3y-y^3\le2\)\(\Leftrightarrow y^3+2\ge3y\)(đúng, vì theo AM-GM có:\(y^3+1+1\ge3\sqrt[3]{y^3}=3y\))
=> Đpcm
ta chứng minh A>=2 (1) thật vậy
\(A\ge2\Leftrightarrow\left(x+y+z\right)^2\ge4\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge x^2+y^2+z^2+xyz\)
\(\Leftrightarrow2xy+2yz+2xz\ge xyz\)
từ giả thiết => \(0\le x;y;z\le2\)do đó \(2xy+2yz+2zx\ge2xy\ge xyz\)
vậy (1) được chứng minh. dấu "=" xảy ra khi (x;y;z)=(2;0;0) và các hoán vị
Ta có: \(xy+yz+zx=xyz\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)ta có: \(a,b,c>0;a+b+c=1\)do đó 0<a,b,c<1
\(P=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}+6\left(ab+bc+ca\right)\)
\(=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}+2\left(a+b+c\right)^2-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)
\(=\left(\frac{b^2}{a}-2b+a\right)+\left(\frac{c^2}{b}-2c+b\right)+\left(\frac{a^2}{c}-2a+c\right)-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)
\(=\frac{\left(a-b\right)^2}{a}+\frac{\left(b-c\right)^2}{b}+\frac{\left(c-a\right)^2}{c}-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)
\(=\frac{\left(1-a\right)\left(a-b\right)^2}{a}+\frac{\left(1-b\right)\left(b-c\right)^2}{b}+\frac{\left(1-c\right)\left(c-a\right)^2}{c}+3\ge3\)
Vậy GTNN của P=3
Can them dieu kien cua x;y;z vi du x;y;z>0
WLOG \(x\ge y\ge z\)
Ap dung BDT Rearrangement ta co:
\(VT=xy^2+yz^2+zx^2\le x^2y+xyz+yz^2\)
\(=xyz+y\left(x^2+z^2\right)=\text{}xyz+y\left(3-y^2\right)\)
\(\le\text{}xyz+2=VP\)
Cảm ơn bạn