Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\)
Áp dụng BĐT Cosi ta có:
\(x\sqrt{1-x^2}\le\dfrac{x^2+1-x^2}{2}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{x^3}{x\sqrt{1-x^2}}\ge2x^3\)
Cmtt:
\(\dfrac{y^3}{y\sqrt{1-y^2}}\ge2y^3\)
\(\dfrac{z^3}{z\sqrt{1-z^2}}\ge2z^3\)
\(\Rightarrow\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}+\dfrac{y^3}{y\sqrt{1-y^2}}+\dfrac{z^3}{z\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\) (ĐPCM)
\(ax^3=by^3=cz^3\Rightarrow\dfrac{ax^2}{\dfrac{1}{x}}=\dfrac{by^2}{\dfrac{1}{y}}=\dfrac{cz^2}{\dfrac{1}{z}}=\dfrac{ax^2+by^2+cz^2}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=ax^2+by^2+cz^2\)
=> \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{ax^3}=\sqrt[3]{by^3}=\sqrt[3]{cz^3}\)
\(=\dfrac{\sqrt[3]{a}}{\dfrac{1}{x}}=\dfrac{\sqrt[3]{b}}{\dfrac{1}{y}}=\dfrac{\sqrt[3]{c}}{\dfrac{1}{z}}=\dfrac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}.\)
Vay \(\sqrt[3]{ax^2+by^2+cz^2}=\)\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}.\)
Biến đổi vế trái ta có:
\(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)\left(ac+bc+c^2+ab\right)\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)*
Vì \(a+b+c=0\)\(\Rightarrow\)*\(=-3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
cũng có \(\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\) Thay vào biểu thức trên ta được
\(-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=3abc\)
\(VT=VP\)=> đpcm
vì \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\)
ta có \(B=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)
mà \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\Rightarrow B=xyz.\dfrac{3}{xyz}=3\)
Lời giải:
Đặt \(ax^3=by^3=cz^3=k^3\)
\(\Rightarrow \left\{\begin{matrix} a=\frac{k^3}{x^3}\\ b=\frac{k^3}{y^3}\\ c=\frac{k^3}{z^3}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \sqrt[3]{a}=\frac{k}{x}\\ \sqrt[3]{b}=\frac{k}{y}\\ \sqrt[3]{c}=\frac{k}{z}\end{matrix}\right.\)
\(\Rightarrow \sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=k\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=k(*)\)
Mặt khác theo tính chất dãy tỉ số bằng nhau:
\(k^3=ax^3=by^3=cz^3=\frac{ax^2}{\frac{1}{x}}=\frac{by^2}{\frac{1}{y}}=\frac{cz^2}{\frac{1}{z}}=\frac{ax^2+by^2+cz^2}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=ax^2+by^2+cz^2\)
\(\Rightarrow k=\sqrt[3]{ax^2+by^2+cz^2}(**)\)
Từ $(*)$ và $(**)$ ta có đpcm.
1) \(1019x^2+18y^4+1007z^2\)
\(=\left(15x^2+15y^4\right)+\left(3y^4+3z^2\right)+\left(1004x^2+1004z^2\right)\)
\(\ge2\sqrt{15x^2.15y^4}+2\sqrt{3y^4.3z^2}+2\sqrt{1004x^2.1004z^2}=30xy^2+6y^2z+2008xz\left(đpcm\right)\)
a) Ta có:
\(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}=-\sqrt{n}+\sqrt{n+1}\)
\(\Rightarrow A=...=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{48}+\sqrt{49}=-1+7=6\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2})^2\leq (x^2+y^2+z^2)(1-y^2+1-z^2+1-x^2)\)
Áp dụng BĐT AM-GM:
\((x^2+y^2+z^2)(1-y^2+1-z^2+1-x^2)\leq \left(\frac{x^2+y^2+z^2+1-y^2+1-z^2+1-x^2}{2}\right)^2=(\frac{3}{2})^2\)
Do đó:
\((x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2})^2\leq (\frac{3}{2})^2\)
\(\Rightarrow x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\leq \frac{3}{2}\)
Dấu "=" xảy ra khi \(x^2+y^2+z^2=1-y^2+1-z^2+1-x^2\Leftrightarrow x^2+y^2+z^2=\frac{3}{2}\)
Vậy $A=\frac{3}{2}$
\(\sqrt{1+8x^3}=\sqrt{\left(1+2x\right)\left(1-2x+4x^2\right)}\le\dfrac{1+2x+1-2x+4x^2}{2}=\dfrac{2+4x^2}{2}=1+2x^2\)
(AM-GM)
CMTT và áp dụng Cauchy-Schwarz:
\(P\ge\dfrac{9}{\sqrt{1+8x^3}+\sqrt{1+8y^3}+\sqrt{1+8z^3}}\)
\(\ge\dfrac{9}{1+2x^2+1+2y^2+1+2z^2}=\dfrac{9}{3+2\left(x^2+y^2+z^2\right)}=\dfrac{9}{3+2.3}=1\)
\("="\Leftrightarrow x=y=z=1\)