\(x^2+y^2=xy+1\)  tìm max của \(x^4+y^4-x^2y^2\)

hộ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2020

\(x^2+y^2=xy+1\Rightarrow\left(x^2+y^2\right)^2=\left(xy+1\right)^2\)do hai vế lớn hơn hoặc bằng 0

\(\Rightarrow x^4+y^4+2x^2y^2=x^2y^2+2xy+1\)

\(\Rightarrow x^4+y^4-x^2y^2=-2x^2y^2+2xy+1\)

\(\Rightarrow x^4+y^4-x^2y^2=-2\left(xy+\frac{1}{2}\right)^2+\frac{3}{2}\le\frac{3}{2}\)

\(\Rightarrow\left(x^4+y^4-x^2y^2\right)_{max}=\frac{3}{2}\)đạt được khi \(xy=-\frac{1}{2}\)

14 tháng 8 2016

để mk làm nốt cho

\(y^4-2y^3+2y^2-y-2=0\)

<=> \(\left(y^4-2y^3+y^2\right)+\left(y^2-y\right)-2=0\)

<=> \(\left(y^2-y\right)^2+\left(y^2-y\right)-2=0\)

đặt y^2-y=t thì ta có pt \(t^2+t-2=0\)

                       <= >\(\int_{t=-2}^{t=1}\)

với t=1==> \(y^2-y=1\) từ đó tính ra nghiệm x=\(\frac{1+\sqrt{5}}{2}\) và \(x=\frac{1-\sqrt{5}}{2}\)

với t=-2 thì pt vô nghiệm 

14 tháng 8 2016

thế \(x^4-4x^2+8x+4=0\) tách ra ntn hả b

 

3 tháng 3 2019

1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0

Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)\((x = -2 ; y = 3)\)

3 tháng 3 2019

\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)

\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))

Thay vào phương trình (2) giải dễ dàng.

3 tháng 7 2016

Tổng hợp hệ pt

16 tháng 2 2020

Đặt \(x^2+y^2=a;xy=b\) \(\Rightarrow a-b=1\Leftrightarrow b=a-1\)

Từ giả thiết:\(x^2+y^2-xy=1\Leftrightarrow x^2+y^2+\left(x-y\right)^2=2\ge x^2+y^2\)

Và \(2x^2+2y^2=2xy+2\Leftrightarrow3\left(x^2+y^2\right)=\left(x+y\right)^2+2\ge2\)\(\Leftrightarrow x^2+y^2\ge\frac{2}{3}\)

Suy ra:\(\frac{2}{3}\le a\le2\)

Ta có:\(x^4+y^4-x^2y^2=\left(x^2+y^2\right)^2-3x^2y^2=a^2-3b^2=-2a^2+6a-3\)

Đến đây vẽ bảng biến thiên ra :)) 

giải hệ phương trình 1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\) 3 ,...
Đọc tiếp

giải hệ phương trình

1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)

3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)

4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)

5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)

8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)

3
15 tháng 1 2020

3) ta xét phương trình thứ nhất
\(x-\frac{1}{x}=y-\frac{1}{y}\)
<=>\(x-y-\frac{1}{x}+\frac{1}{y}=0\)
<=>\(x-y-\left(\frac{1}{x}-\frac{1}{y}\right)=0\)
<=>\(x-y-\left(\frac{y-x}{xy}\right)=0\)
<=>\(\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\)
<=>\(x=y\) hoặc xy=-1
Với x=y thay vào phương trình thứ hai ta có
\(2x=x^3+1 \)

<=> \(x^3-2x+1=0\)
<=>\(x^3-x^2+x^2-x-x+1=0\)
<=>\(\left(x-1\right)\left(x^2+x-1\right)=0\)
<=> \(x=1\) hoặc \(x^2+x-1=0\)
\(x^2+x-1=0\) <=> \(x=\frac{-1+\sqrt{5}}{2}\)

hoặc \(x=\frac{-1-\sqrt{5}}{2}\)
Đối với xy=-1 thì y=-1/x thay vào phương trình 2 giải bình thường