Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu c mình không chắc là do đề hay là do mình chưa từng gặp dạng này
\(bx^2=ay^2\Leftrightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}\Leftrightarrow\left(\dfrac{x^2}{a}\right)^{1010}=\left(\dfrac{y^2}{b}\right)^{1010}\\ \Leftrightarrow\dfrac{x^{2020}}{a^{1010}}=\dfrac{y^{2020}}{a^{1010}}\)
Áp dụng t/c dtsbn:
\(\dfrac{x^{2020}}{a^{1010}}=\dfrac{y^{2020}}{b^{1010}}=\dfrac{x^{2020}+y^{2020}}{a^{1010}+b^{1010}}\left(3\right)\)
Đặt \(\dfrac{x^2}{a}=\dfrac{y^2}{b}=k\Leftrightarrow x^2=ak;y^2=bk\)
\(x^2+y^2=1\Leftrightarrow ak+bk=1\Leftrightarrow k\left(a+b\right)=1\Leftrightarrow a+b=\dfrac{1}{k}\)
\(\Leftrightarrow\dfrac{2}{\left(a+b\right)^{1010}}=\dfrac{2}{\left(\dfrac{1}{k}\right)^{1010}}=2:\dfrac{1}{k^{1010}}=k^{1010}\left(1\right)\)
Mà \(\dfrac{x^{2020}}{a^{1010}}=\dfrac{\left(x^2\right)^{1010}}{a^{1010}}=\dfrac{a^{1010}k^{1010}}{a^{1010}}=k^{1010}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\) ta được đpcm
a) \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(A=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}...\frac{-9999}{100^2}\)
\(A=-\left(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{9999}{100^2}\right)\) (vì A là tích của 99 thừa số âm nên kết quả là âm)
\(A=-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{99.101}{100.100}\right)\)
\(A=-\left(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}\right)\)
\(A=-\left(\frac{1}{100}.\frac{101}{2}\right)=\frac{-101}{200}\)
b) 2x + 2y = 2x+y
=> 2x = 2x.2y - 2y
=> 2x = 2y.(2x - 1)
\(\Rightarrow2^x⋮2^x-1\)
Mà (2x; 2x - 1) = 1
\(\Rightarrow\begin{cases}2^x-1=1\\2^y=2^x\end{cases}\)\(\Rightarrow\begin{cases}2^x=2=2^1\\x=y\end{cases}\)=> x = y = 1
Vậy x = y = 1
\(\frac{x^4}{a}=\frac{y^4}{b}=\frac{1}{a+b}=\frac{x^4+y^4}{a+b}\Rightarrow x^4+y^4=1.\)
Mà \(x^2+y^2=1\)=>\(x^4+y^4=x^2+y^2=1.\)
Nếu x =0 => y =1 => a =0 vô lí
Xem lại đề dc ko ( hay mình làm sai?)
a) \(\left(1-\frac{2}{5}\right).\left(1-\frac{2}{7}\right).\left(1-\frac{2}{9}\right)...\left(1-\frac{2}{99}\right)\)
\(=\frac{3}{5}.\frac{5}{7}.\frac{7}{9}...\frac{97}{99}\)
\(=\frac{3}{99}=\frac{1}{33}\)
b) Ta có: 2x = 8y+1 = (23)y+1 = 23y+3
=> x = 3y + 3 (1)
9y = 3x-9
=> (32)y = 3x-9
=> 32y = 3x-9
=> 2y = x - 9 (2)
Từ (1) và (2) => x + 2y = 3y + 3 + x - 9
=> x + y = 2y + x - 6