\(x^2+y^2=1.\)  

Chứng minh rằng biểu thức sau không phụ thuộc vào biến  

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=2\left(x^6+y^6\right)-3\left(x^4+y^4\right)\)

\(=2\left[\left(x^2+y^2\right)^3-3x^2y^2\left(x^2+y^2\right)\right]-3\left[\left(x^2+y^2\right)^2-2x^2y^2\right]\)

\(=2\left[1-3x^2y^2\right]-3\left(1-2x^2y^2\right)\)

\(=2-6x^2y^2-3+6x^2y^2=-1\)

25 tháng 7 2020

a) y(x2-y2)(x2+y2)-y(x4-y4)=y[(x2)2-(y2)2] - y(x4-y4)=y(x4-y4)-y(x4-y4)=0

vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)

b) \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)

\(=\left[\left(2x\right)^3+\left(\frac{1}{3}\right)^3\right]-\left(8x^3-\frac{1}{27}\right)=8x^3+\frac{1}{27}-8x^3+\frac{1}{27}=\frac{1}{54}\)

vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)

25 tháng 7 2020

c) (x - 1)^3 - (x - 1)(x^2 + x + 1) - 3(1 - x)x

= (x - 1)(x^2 + x + 1) - (x - 1)(x^2 + x + 1) - 3x(1 - x)

= x^3 - 3x^2 + 3x - 1 - x^3 + 1 - 3x + 3x^2

= 0 (đpcm)

11 tháng 6 2018

a\(=3x^2-6x+6x-3x^2+5=5\)=>ko phụ thuộc vào biến x

b,\(=2x^2y-2xy^2+2xy^2-x^2y-x^2y=0\)=>ko phụ thuộc vào biến ,x,y

21 tháng 8 2018

thế h phải ls đây

13 tháng 8 2018

\(A=x^4-\left(x^2-1\right)\left(x^2+1\right)=x^4-\left(x^4-1\right)=x^4-x^4+1=1\left(đpcm\right)\)

\(B=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3=2x^2+x-x^3-2x^2+x^3-x+3=3\left(đpcm\right)\)

\(C=x^3+y^3+4-\left(x^2+xy+y^2\right)\left(x-y\right)=x^3+y^3+4-\left(x^3-y^3\right)=x^3+y^3+4-x^3+y^3=2y^3+4\)

=>biểu thức không phụ thuộc vào biến x

=> Đpcm

14 tháng 8 2018

haha

16 tháng 9 2018

    \(\left(x-y-1\right)^3-\left(x-y+1\right)^3+6\left(x-y\right)^2\)

\(=\left(x-y\right)^3-1-3\left(x-y\right).1\left(x-y-1\right)-\left[\left(x-y\right)^3+1+3\left(x-y\right).1\left(x-y+1\right)\right]+6\left(x-y\right)^2\)

\(=-2-3\left(x-y\right)\left(x-y-1\right)-3\left(x-y\right)\left(x-y+1\right)+6\left(x-y\right)^2\)

\(=-2-3\left(x-y\right)\left(x-y-1+x-y+1\right)+6\left(x-y\right)^2\)

\(=-2-3\left(x-y\right).2\left(x-y\right)+6\left(x-y\right)^2\)

\(=-2-6\left(x-y\right)^2+6\left(x-y\right)^2=-2\)

Vậy biểu thức trên ko phụ thuộc vào biến. Chúc bạn học tốt.

22 tháng 7 2017

Ta có: \(2\left(x^6+y^6\right)-3\left(x^4+y^4\right)=2\left[\left(x^2\right)^3+\left(y^2\right)^3\right]-3\left(x^4+y^4\right)\)

\(=2\left(x^2+y^2\right)\left(x^4+x^2y^2+y^4\right)-3x^4-3y^4\)

\(=2x^4-2x^2y^2+2y^4-3x^4-3y^4\)

\(=-x^4-2x^2y^2-y^4\)

\(=-\left(x^4+2x^2y^2+y^4\right)\)

\(=-\left(x^2+y^2\right)^2\)

\(=-1\)

Vậy biểu thức trên không phụ thuộc vào biến.

24 tháng 7 2017

thank you

17 tháng 8 2018

\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)

\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)

\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x

17 tháng 8 2018

3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2

Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)

Tương tự ta có b^2-a^2=n

Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn

Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1

Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)

Từ (1) và (2)=> n chia hết cho 40

                 

a) Ta có: \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)

\(=\left(2x\right)^3+\left(\frac{1}{3}\right)^3-8x^3+\frac{1}{27}\)

\(=8x^3+\frac{1}{27}-8x^3+\frac{1}{27}\)

\(=\frac{2}{27}\)

Vậy: Giá trị của biểu thức \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\) không phụ thuộc vào biến

b) Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\)

\(=x^3-3x^2+3x-1-\left(x^3-1\right)-3x\left(1-x\right)\)

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)

\(=0\)

Vậy: Giá trị của biểu thức \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\) không phụ thuộc vào biến

c) Ta có: \(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)

\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)

\(=yx^4-y^5-yx^4+y^5\)

\(=0\)

Vậy: Giá trị của biểu thức \(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\) không phụ thuộc vào biến

15 tháng 8 2020

BÀI 1:

\(A=\left(x-10\right)^2+103\)

Có:    \(\left(x-10\right)^2\ge0\forall x\)

=>   \(A\ge103\)

DẤU "=" XẢY RA <=>   \(\left(x-10\right)^2=0\Rightarrow x=10\)

\(B=\left(2x+1\right)^2-6\)

Có:   \(\left(2x+1\right)^2\ge0\forall x\)

=>   \(B\ge-6\)

DẤU "=" XẢY RA <=>   \(\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)

BÀI 3:

a) \(A=y^4+y^3-y^2-2y-\left(y^4+y^3+y^2-2y^2-2y-2\right)\)

\(A=y^4+y^3-y^2-2y-y^4-y^3+y^2+2y+2\)

\(A=2\)

b)   \(B=\left(2x\right)^3+3^3-8x^3+2\)

\(B=29\)

15 tháng 8 2020

Bài 1.

A = x2 - 20x + 103

A = ( x2 - 20x + 100 ) + 3

A = ( x - 10 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra <=> x - 10 = 0 => x = 10

=> MinA = 3 <=> x = 10

B = 4x2 + 4x - 5

B = ( 4x2 + 4x + 1 ) - 6

B = ( 2x + 1 )2 - 6 ≥ -6 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = -6 <=> x = -1/2

Bài 2.

A = -x2 + 8x - 21

A = -x2 + 8x - 16 - 5

A = -( x2 - 8x + 16 ) - 5

A = -( x - 4 )2 - 5 ≤ -5 ∀ x

Đẳng thức xảy ra <=> x - 4 = 0 => x = 4

=> MaxA = -5 <=> x = 4

B = lỗi đề :>

Bài 3.

a) y( y3 + y2 - y - 2 ) - ( y2 - 2 )( y2 + y + 1 )

= y4 + y3 - y2 - 2y - ( y4 + y3 + y2 - 2y2 - 2y - 2 )

= y4 + y3 - y2 - 2y - y4 - y3 - y2 + 2y2 + 2y + 2

= 2 ( đpcm )

b) ( 2x + 3 )( 4x2 - 6x + 9 ) - 2( 4x3 - 1 )

= ( 2x )3 + 27 - 8x3 + 2

= 8x3 + 27 - 8x3 + 2

= 29 ( đpcm )

19 tháng 6 2016

 t cux đg đinh hỏi bài này

19 tháng 6 2016

mấy bài này dễ mà, bạn tự giải đi