K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

A = x^4(x^2+x) + 2x^3(x^2+x) - x^2(x^2+x) - 2x(x^2+x) + 4x^2 + 4x + 1

= 3x^4 + 6x^3 + x^2 - 2x + 1 ( sau khi thay x^2 + x = 3 và rút gọn )

= 3x^2(x^2+x) + 3x(x^2+x) - 2x^2 - 2x + 1

= 9x^2 + 9x - 2x^2 - 2x +1 = 7(x^2+x) +1 = 22

14 tháng 3 2020

a) \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)

<=> 1 - x + 3(x + 1) = 2x + 3

<=> 1 - x + 3x + 3 = 2x + 3

<=> 1 - x + 3x + 3 - 2x = 3

<=> 4 = 3 (vô lý)

=> pt vô nghiệm

b) ĐKXĐ: \(x\ne1;x\ne2\)

\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)

<=> (x - 2)(2 - x) - 5(x + 1)(2 - x) = 15(x - 2)

<=> 2x - x2 - 4 + 2x - 5x - 5x2 + 10 = 15x - 30

<=> -x + 4x2 - 14 = 15x - 30

<=> x - 4x2 + 14 = 15x - 30 

<=> x - 4x2 + 14 + 15x - 30 = 0

<=> 16x - 4x2 - 16 = 0

<=> 4(4x - x2 - 4) = 0

<=> -x2 + 4x - 4 = 0

<=> x2 - 4x + 4 = 0

<=> (x - 2)2 = 0

<=> x - 2 = 0

<=> x = 2 (ktm)

=> pt vô nghiệm 

c) xem bài 4 ở đây: Câu hỏi của gjfkm

d) ĐKXĐ: \(x\ne1;x\ne2;x\ne3\)

\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)

<=> \(\frac{x+4}{\left(x-1\right)\left(x-2\right)}+\frac{x+1}{\left(x-1\right)\left(x-3\right)}=\frac{2x+5}{\left(x-1\right)\left(x-3\right)}\)

<=> (x + 4)(x - 3) + (x + 1)(x - 2) = (2x + 5)(x - 2)

<=> x2 - 3x + 4x - 12 + x2 - 2x + x - 2 = 2x2 - 4x + 5x - 10

<=> 2x2 - 14 = 2x2 + x - 10

<=> 2x2 - 14 - 2x2 = x - 10

<=> -14 = x - 10

<=> -14 + 10 = x

<=> -4 = x

<=> x = -4

23 tháng 7 2018

ai đó giúp tôi giải bài này với

14 tháng 2 2020

a) \(\left(2x+3\right)^2-3\left(x-4\right)\left(x+4\right)=\left(x-2\right)^2+1\)

\(\Leftrightarrow4x^2+12x+9-3\left(x^2-16\right)=x^2-4x+4+1\)

\(\Leftrightarrow4x^2+12x+9-3x^2+48=x^2-4x+5\)

\(\Leftrightarrow x^2+12x+57=x^2-4x+5\)

\(\Leftrightarrow16x+52=0\)

\(\Leftrightarrow x=-\frac{13}{4}\)

b) \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(\Leftrightarrow\)Xem lại đề !

c) \(x\left(x-1\right)-\left(x-3\right)\left(x+4\right)=5x\)

\(\Leftrightarrow x^2-x-x^2-x+12=5x\)

\(\Leftrightarrow-2x+12=5x\)

\(\Leftrightarrow7x-12=0\)

\(\Leftrightarrow x=\frac{12}{7}\)

d) \(\left(2x+1\right)\left(2x-1\right)=4x\left(x-7\right)-3x\)

\(\Leftrightarrow4x^2-1=4x^2-28x-3x\)

\(\Leftrightarrow28x+3x-1=0\)

\(\Leftrightarrow31x-1=0\)

\(\Leftrightarrow x=\frac{1}{31}\)

14 tháng 2 2020

a) (2x + 3)2 - 3 (x - 4) (x + 4)= (x - 2)2 + 1

<=> 4x^2 + 12x + 9 - 3(x^2 - 16) = x^2 - 4x + 4 + 1 

<=> 4x^2 + 12x + 9 - 3x^2 + 48 = x^2 - 4x + 5

<=> x^2 + 12x + 57 = x^2 - 4x + 5

<=> x^2 - x^2 + 12x + 4x + 57 - 5 = 0

<=> 16x + 52 = 0

<=> 16x = -52

<=> x = -13/4

29 tháng 11 2019

Làm ngắn gọn thôi nhé :v

\(A=\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)

\(A=\frac{x^5-3x^4-3x^3+11x^2-6x}{x^5-8x^2+22x^2-24x+9}\)

\(A=\frac{x^4-3x^3-3x^2+11x-6}{x^4-8x^3+22x^2-24x+9}\)

\(A=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x-3\right)}{\left(x-1\right)\left(x-1\right)\left(x-3\right)\left(x-3\right)}\)

\(A=\frac{x+2}{x-3}\)

\(B=\frac{x}{x+2}+\frac{2}{x-2}-\frac{4x}{4-x^2}\)

\(B=\frac{-x^4-4x^3+16x+16}{-x^4+8x^2-16}\)

\(B=\frac{\left(-x-2\right)\left(x+2\right)\left(x+2\right)\left(x-2\right)}{\left(-x-2\right)\left(x-2\right)\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{x+2}{x-2}\)

\(C=\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x\left(1-x\right)}{9-x^2}\)

\(C=\frac{1+x}{3-x}-\left(\frac{1-2x}{3+x}\right)-\frac{x\left(1-x\right)}{9-x^2}\)

\(C=\frac{10x}{-x^2+9}\)

\(D=\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)

\(D=\frac{5}{2x^2+6x}-\left(\frac{4-3x^2}{x^2-9}\right)-3\)

\(D=\frac{51x^2+138x-45}{2x^4+6x^2-18x^2-54x}\)

\(D=\frac{3\left(17x-5\right)\left(x+3\right)}{2x\left(x+3\right)\left(x+3\right)\left(x-2\right)}\)

\(D=\frac{51x-15}{2x^3-18x}\)

\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)

\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\left(\frac{3x-2}{x^2+2x+1}\right)\)

\(E=\frac{10x^4-10}{x^6-3x^4+3x^2-1}\)

\(E=\frac{10\left(x^2+1\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x+1\right)\left(x+1\right)\left(x-1\right)\left(x-1\right)\left(x-1\right)}\)

\(E=\frac{10x^2+10}{x^4-2x+1}\)

14 tháng 10 2018

1) \(2\left(x+2\right)-\left(3x+1\right)\left(x+2\right)=0\)

\(\left(x+2\right)\left(2-3x-1\right)=0\)

\(\left(x+2\right)\left(1-3x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+2=0\\1-3x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}}\)

2) \(3x\left(x-3\right)-\left(2x-6\right)=0\)

\(3x\left(x-3\right)-2\left(x-3\right)=0\)

\(\left(x-3\right)\left(3x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\3x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{2}{3}\end{cases}}}\)

3) \(\left(2x-1\right)^2=\left(3x-5\right)^2\)

\(\left(2x-1\right)^2-\left(3x-5\right)^2=0\)

\(\left(2x-1-3x+5\right)\left(2x-1+3x-5\right)=0\)

\(\left(4-x\right)\left(5x-6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-x=0\\5x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=\frac{6}{5}\end{cases}}}\)

4) \(\left(4x+3\right)\left(x-1\right)=x^2-1\)

\(\left(4x+3\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)\)

\(\left(4x+3\right)\left(x-1\right)-\left(x+1\right)\left(x-1\right)=0\)

\(\left(x-1\right)\left(4x+3-x-1\right)=0\)

\(\left(x-1\right)\left(3x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\3x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-2}{3}\end{cases}}}\)

5) \(6-4x-\left(2x-3\right)\left(x-3\right)=0\)

\(-2\left(2x-3\right)-\left(2x-3\right)\left(x-3\right)=0\)

\(\left(2x-3\right)\left(-2-x+3\right)=0\)

\(\left(2x-3\right)\left(1-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-3=0\\1-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}}\)

6) \(2x^2-5x-7=0\)

\(2x^2+2x-7x-7=0\)

\(2x\left(x+1\right)-7\left(x+1\right)=0\)

\(\left(x+1\right)\left(2x-7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\2x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{7}{2}\end{cases}}}\)

7) \(x^2-x-12=0\)

\(x^2+3x-4x-12=0\)

\(x\left(x+3\right)-4\left(x+3\right)\)

\(\left(x+3\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}}\)

8) \(3x^2+14x-5=0\)

\(3x^2+15x-x-5=0\)

\(3x\left(x+5\right)-\left(x+5\right)=0\)

\(\left(x+5\right)\left(3x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+5=0\\3x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=\frac{1}{3}\end{cases}}}\)