Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(x^2+x^2y^2-2y=0\)
\(\Leftrightarrow x^2=\frac{2y}{y^2+1}\le1\left(\left(y-1\right)^2\ge0\right)\)
\(\Leftrightarrow-1\le x\le1\)(1)
Ta lại có
\(x^3+2y^2-4y+3=0\)
\(\Leftrightarrow x^3=-2y^2+4y-3\)
\(=\left(-2y^2+4y-2\right)-1\)
\(=-1-2\left(y-1\right)^2\le-1\)
\(\Rightarrow x\le-1\)(2)
Từ (1) và (2) \(\Rightarrow x=-1\Rightarrow x^2=1\)
\(\Rightarrow y^2-2y+1=0\)
\(\Rightarrow y=1\Rightarrow y^2=1\)
\(\Rightarrow Q=x^2+y^2=1+1=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^3+8y^3=0\\x^3-8y^3=0\end{matrix}\right.\Leftrightarrow x=y=0\)
=>A=0
\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ
\(x^2+y^2+2x+2y+2=0\)
<=> \(\left(x+1\right)^2+\left(y+1\right)^2=0\)
<=> \(\hept{\begin{cases}x+1=0\\y+1=0\end{cases}}\)
<=> \(x=y=-1\)
\(Q=\left(-1+2\right)^{2017}+\left(-1+2\right)^{2018}=2\)
Ta có: \(x^2+y^2+2x+2y+2=0\)
\(\left(x^2+2.x.1+1^2\right)+\left(y^2+2.y.1+1^2\right)=0\)
\(\left(x+1\right)^2+\left(y+1\right)^2=0\)
Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Mà \(\left(x+1\right)^2+\left(y+1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases}}\)
\(Q=\left(x+2\right)^{2017}+\left(y+2\right)^{2018}\)
\(Q=\left(-1+2\right)^{2017}+\left(-1+2\right)^{2018}\)
\(Q=1^{2017}+1^{2018}\)
\(Q=1+1\)
\(Q=2\)
Vậy \(Q=2\)
Tham khảo nhé~
a, Ta có
A= x(x+2)+y(y-2)-2xy +37
=x2+2x+y2-2y-2xy+37
=x2-2xy+y2+2(x-y)+37
=(x-y)2+2(x-y)+37
Vì x-y=7
=>(x-y)2+2(x-y)+37=72+14+37=100
KL
b, Ta có B=x2+4y2-2x+10+4xy-4y
=x2+4xy+4y2-2x-4y+10
=(x+2y)2-2(x+2y)+10
Vì x+2y=5
=>(x+2y)2-2(x+2y)+10=52-10+10=25
KL