K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:

\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}=\frac{4}{20}=\frac{1}{5}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\x^2+y^2=20\end{cases}}\Rightarrow x=y=\sqrt{10}\)

1 tháng 1 2017

\(\ge\frac{1}{5}\) 

23 tháng 6 2018

1.

\(x+y=1\Rightarrow x=1-y\)

\(\Rightarrow x^2+y^2=\left(1-y\right)^2+y^2=2y^2-2y+1=2\left(y^2-y+\dfrac{1}{2}\right)=2\left(y^2-2y\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(y-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

Vậy \(A_{Min}=\dfrac{1}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)

2.

Ta có:

\(B=\dfrac{1}{x^2y^2}-\dfrac{1}{x^2}-\dfrac{1}{y^2}=\dfrac{1}{x^2y^2}-\dfrac{y^2}{x^2y^2}-\dfrac{x^2}{x^2y^2}=\dfrac{1-\left(x^2+y^2\right)}{x^2y^2}\le\dfrac{1-\dfrac{1}{2}}{\dfrac{1}{4}\cdot\dfrac{1}{4}}=\dfrac{\dfrac{1}{2}}{\dfrac{1}{8}}=\dfrac{1}{4}\)

Vậy \(B_{Max}=\dfrac{1}{4}\Leftrightarrow x=y=\dfrac{1}{2}\)

Tui chỉ làm bừa thui nha. K chắc lắm. Thử lại đi haha

7 tháng 5 2018

4. x + y = 1

⇒ x = y - 1

Thế : x = y - 1 vào bài toán , ta có :

G = 2( y - 1)2 + y2

G = 2y2 - 4y + 2 + y2

G = 3y2 - 4y + 2

G = 3( y2 - 2.\(\dfrac{2}{3}\) + \(\dfrac{4}{9}\)) + 2 - \(\dfrac{4}{3}\)

G = 3( y - \(\dfrac{2}{3}\))2 + \(\dfrac{2}{3}\)\(\dfrac{2}{3}\) ∀x

⇒ GMIN = \(\dfrac{2}{3}\) ⇔ y = \(\dfrac{2}{3}\) ; x = 1 - \(\dfrac{2}{3}\) = \(\dfrac{1}{3}\)

Còn lại làm TT nhen...

7 tháng 5 2018

Ta có: x +y = 1

=> x = 1 - y

Thay vào ta được:

\(G=2\left(1-y\right)^2+y^2=2\left(1-2y+y^2\right)+y^2=2-4y+2y^2+y^2=2-4y+3y^2\)

\(=3y^2-4y+2=3\left(y^2-\dfrac{4}{3}y+\dfrac{2}{3}\right)=3\left(y^2-2.y.\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{2}{9}\right)=3\left(y-\dfrac{2}{3}\right)^2+\dfrac{2}{3}\ge\dfrac{2}{3}\)

=> MinA = \(\dfrac{2}{3}\) khi y = \(\dfrac{2}{3}\)\(x=\dfrac{1}{3}\)

29 tháng 12 2016

Đề không thiếu. Ở đây x^2, y^2 rồi.

mình không côsi là cô của ai

​x^2+y^2-2xy=(x-y)^2>=0 mọi xy

=>20-2xy​>=0 mọi xy

​=>xy<=10

​P=(x^2+y^2)/xy=2/xy>=2/10=1/5

28 tháng 12 2016

đề thiếu : phải có x,y > 0

áp dụng bđt Cô-si ta có: x^2+y^2 >= 2 \(\sqrt{ }\)(xy)^2=2xy

P=1/x^2 + 1/y^2 = (x^2+y^2)/(xy)^2 >= 2xy/(xy)^2=2/xy (1)

dấu "=" xảy ra <=> x^2=y^2,mà x^2+y^2=20 => 2x^2=20=>x^2=10=>x = căn 10 => y= căn 10

Thay x=y=căn 10 vào (1) ta có P >= 2/10=1/5

Vậy minP=1/5

(ko chắc) 

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

29 tháng 8 2018

1) ta có : \(x^2+5y^2-4xy+2y=3\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=2\)

\(\Leftrightarrow\left(x-2y\right)^2=2-\left(y+1\right)^2\ge0\) \(\Leftrightarrow2\ge\left(y+1\right)^2\Leftrightarrow-\sqrt{2}\le y+1\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}-1\le y\le\sqrt{2}-1\)

ta lại có : \(\left(y+1\right)^2=2-\left(x-2y\right)^2\ge0\)

\(\Leftrightarrow2\ge\left(x-2y\right)^2\Leftrightarrow-\sqrt{2}\le x-2y\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}+2y\le x\le\sqrt{2}+2y\Leftrightarrow-2-3\sqrt{2}\le x\le-2+3\sqrt{2}\)

vậy \(x_{max}=-2+3\sqrt{2}\)

dâu "=" xảy ra khi \(y=\sqrt{2}-1\)

29 tháng 8 2018

câu 3 : ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Leftrightarrow y^2=-\left(x+y\right)^2-7\left(x+y\right)-10\ge0\)

\(\Leftrightarrow-5\le x+y\le-2\)

\(\Rightarrow S_{max}=-2\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-2\end{matrix}\right.\Leftrightarrow y=0;x=-2\)

\(S_{min}=-5\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-5\end{matrix}\right.\Leftrightarrow y=0;x=-5\)

bài này có trong đề thi hsg trường mk :)