\(P=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2018

MAx

ó thể thấy rằng:
xy + yz + 2zx = y(x + z) + 2zx <= lyllx + zl + 2zx (1).
Lại có lx + zl <= căn[2(x^2 + z^2)] = căn[2(1 - y^2)] và 2zx <= z^2 + x^2 = 1 - y^2; từ đây suy ra
xy + yz + 2zx <= lylcăn[2(1 - y^2)] + 1 - y^2 (2).
Tiếp đến, ta sẽ chứng minh lylcăn(2(1 - y^2)] + 1 - y^2 <= căn(3)/2 + 1/2 (3), từ đó suy ra kết quả của bài toán. Thật vậy, ta có
lylcăn(2(1 - y^2)] + 1 - y^2 <= căn(3)/2 - 1/2 <=> lylcăn[2(1 - y^2)] <= y^2 + căn(3)/2 - 1/2
<=> 2y^2(1 - y^2) <= y^4 + (căn(3) - 1)y^2 + (căn(3)/2 - 1/2)^2
<=> 3y^4 - (3 - căn(3))y^2 + (căn(3)/2 - 1/2)^2
<=> 3y^4 - 2căn(3)(căn(3)/2 - 1/2)y^2 + (căn(3)/2 - 1/2)^2
<=> (căn(3)y^2 - căn(3)/2 + 1/2)^2 >= 0.
Đẳng thức xảy ra khi y = căn[1/2 - 1/2căn(3)] hoặc y = -căn[1/2 - 1/2căn(3)].
Từ (1),(2),(3) suy ra
xy + yz + 2zx <= căn(3)/2 + 1/2.
Dấu = xảy ra khi dấu = của (1),(2),(3) cùng xảy ra, tức là x = z = (1/2)căn[(1 + căn(3))/căn(3)] và y = căn[1/2 - 1/2căn(3)], hoặc x = z = (-1/2)căn[(1 + căn(3))/căn(3)] và y = -căn[1/2 - 1/2căn(3)].

bạn đang làm cái j vậy

23 tháng 1 2018

hình như bài này có trong đề thi hsg toán 9 tp ha nôi 2016 hay sao ý ^.^

23 tháng 1 2018

đúng luôn đó bạn

15 tháng 10 2017

Dễ dàng chứng minh được BĐT đơn giản sau

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Áp dụng vào bài với \(\left(\dfrac{xy}{z};\dfrac{yz}{x};\dfrac{zx}{y}\right)=\left(a;b;c\right)\), ta được:

\(\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)^2\ge3\left(x^2+y^2+z^2\right)=3\)

\(\Rightarrow C\ge\sqrt{3}\)

MinC \(=\sqrt{3}\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)

15 tháng 11 2018

2.

a/ Áp dụgn hệ quả bđt cô si,ta có :

\(A=xy+yz+zx\le\dfrac{\left(x+y+z\right)}{3}=\dfrac{a^2}{3}\)

Vậy GTLN A =a^2/3 khi x= y =z =a/3

b/Áp dụng BĐT Cô-Si dạng Engel,ta có :

\(B=\dfrac{x^2}{1}+\dfrac{y^2}{1}+\dfrac{z^2}{z}\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{a^2}{3}\)

Vậy GTNN của B = a^2/2 khi x=y=z =a/3

15 tháng 11 2018

\(B=\dfrac{3x}{1-x}+\dfrac{4\left(1-x\right)}{x}+7\ge2\sqrt{\dfrac{3x}{1-x}.\dfrac{4\left(1-x\right)}{x}}+7=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)

Vậy min B = \(\left(2+\sqrt{3}\right)^2\) khi \(\dfrac{3x}{1-x}=\dfrac{4\left(1-x\right)}{x}\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)

16 tháng 6 2018
https://i.imgur.com/Godbi3O.jpg
20 tháng 9 2018

Áp dụng BĐT Cô - Si cho các số dương , ta có :

\(\left\{{}\begin{matrix}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\x^2+z^2\ge2xz\end{matrix}\right.\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)

Áp dụng BĐT Cô - Si dạng Engel , ta có :

\(\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{3+xy+yz+xz}\ge\dfrac{9}{3+x^2+y^2+z^2}=\dfrac{9}{6}=\dfrac{3}{2}\)

\("="\Leftrightarrow x=y=z=1\)

9 tháng 10 2017

Biến đổi vế trái ta có:

\(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)

\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b\right)\)

\(=\left(a+b+c\right)^3-3\left(a+b\right)\left(ac+bc+c^2+ab\right)\)

\(=\left(a+b+c\right)^3-3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)*

\(a+b+c=0\)\(\Rightarrow\)*\(=-3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

cũng có \(\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\) Thay vào biểu thức trên ta được

\(-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=3abc\)

\(VT=VP\)=> đpcm

9 tháng 10 2017

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\)

ta có \(B=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)

\(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\Rightarrow B=xyz.\dfrac{3}{xyz}=3\)