Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}=-\sqrt{n}+\sqrt{n+1}\)
\(\Rightarrow A=...=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{48}+\sqrt{49}=-1+7=6\)
\(P=\frac{x}{y+\sqrt{2}}\Rightarrow P.y+P\sqrt{2}=x\Rightarrow x-P.y=P\sqrt{2}\)
\(\Rightarrow2P^2=\left(x-P.y\right)^2\le\left(1+P^2\right)\left(x^2+y^2\right)=1+P^2\)
\(\Rightarrow P^2\le1\Rightarrow P_{max}=1\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{\sqrt{2}}{2}\\y=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
cho\(\Delta ABC\)có 3 góc nhọn, đường cao BE, CF cắt nhau tại H. Qua A vẽ các đường thảng song song với BE và CF lần lượt cắt các đường thẳng CF và BE tại P và Q
1) CM: AH.AB=QA.BC
2)CM: BF.BA+CE.CA=BC2
3) Đường trung tuyến AM của tam giác ABC cắt PQ tại K. CM: 4 điểm A, K, E, Q cùng thuộc một đường tròn
2.
a/ Áp dụgn hệ quả bđt cô si,ta có :
\(A=xy+yz+zx\le\dfrac{\left(x+y+z\right)}{3}=\dfrac{a^2}{3}\)
Vậy GTLN A =a^2/3 khi x= y =z =a/3
b/Áp dụng BĐT Cô-Si dạng Engel,ta có :
\(B=\dfrac{x^2}{1}+\dfrac{y^2}{1}+\dfrac{z^2}{z}\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{a^2}{3}\)
Vậy GTNN của B = a^2/2 khi x=y=z =a/3
\(B=\dfrac{3x}{1-x}+\dfrac{4\left(1-x\right)}{x}+7\ge2\sqrt{\dfrac{3x}{1-x}.\dfrac{4\left(1-x\right)}{x}}+7=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)
Vậy min B = \(\left(2+\sqrt{3}\right)^2\) khi \(\dfrac{3x}{1-x}=\dfrac{4\left(1-x\right)}{x}\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)
2.
\(x+y+1=\sqrt{x}+\sqrt{y}+\sqrt{xy}\)
\(\Leftrightarrow2x+2y+2=2\sqrt{x}+2\sqrt{y}+2\sqrt{xy}\)
\(\Leftrightarrow x-2\sqrt{xy}+y+x-2\sqrt{x}+1+y-2\sqrt{y}+1=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=\sqrt{y}\\\sqrt{x}=1\\\sqrt{y}=1\end{matrix}\right.\Leftrightarrow x=y=1\)
Từ đó suy ra : \(\left\{{}\begin{matrix}P=1^2+1^2=2\\Q=1^{1023}+1^{2014}=2\end{matrix}\right.\)
1.
Xét \(x^3+y^3+xy=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiacopxki :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\)
\(\Rightarrow x^2+y^2\ge\frac{1}{2}\)
Từ đó ta có : \(P=\frac{1}{x^2+y^2}\le\frac{1}{\frac{1}{2}}=2\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)