\(A=\frac{\left(x^4+x^3-10x^2+x+2015\right)\left(x^4+x^2+1\ri...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2015

Giải pt x2-3x+1=0 được 2 nghiệm:\(\frac{3+\sqrt{5}}{2}và\frac{3-\sqrt{5}}{2}\)

Thay 2 nghiệm trên vào A => A=\(\frac{8061}{4}\)

4 tháng 12 2015

\(\frac{8061}{4}\)

23 tháng 3 2020

bấm máy tính casio là ra đc đấy :))

26 tháng 11 2017

) \(\dfrac{x^3+8y^3}{2y+x}\)

\(=\dfrac{x^3+\left(2y\right)^3}{x+2y}\)

\(=\dfrac{\left(x+2y\right)\left[x^2+x.2y+\left(2y\right)^2\right]}{x+2y}\)

\(=x^2+2xy+4y^2\)

b) \(\dfrac{a-1}{2\left(a-4\right)}+\dfrac{a}{a-4}\) MTC: \(2\left(a-4\right)\)

\(=\dfrac{a-1}{2\left(a-4\right)}+\dfrac{2a}{2\left(a-4\right)}\)

\(=\dfrac{a-1+2a}{2\left(a-4\right)}\)

\(=\dfrac{3a-1}{2\left(a-4\right)}\)

c) \(\dfrac{x^3+3x^2y+3xy^2+y^3}{2x+2y}\)

\(=\dfrac{\left(x+y\right)^3}{2\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{2}\)

d) \(\left(x-5\right)^2+\left(7-x\right)\left(x+2\right)\)

\(=\left(x^2-2.x.5+5^2\right)+\left(7x+14-x^2-2x\right)\)

\(=x^2-10x+25+7x+14-x^2-2x\)

\(=39-5x\)

e) \(\dfrac{3x}{x-2}-\dfrac{2x+1}{2-x}\)

\(=\dfrac{3x}{x-2}+\dfrac{2x+1}{x-2}\)

\(=\dfrac{3x+2x+1}{x-2}\)

\(=\dfrac{5x+1}{x-2}\)

h) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x+6}{4-9x^2}\)

\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{9x^2-4}\)

\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\) MTC: \(\left(3x-2\right)\left(3x+2\right)\)

\(=\dfrac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{\left(3x+2\right)-\left(3x-2\right)+\left(3x+6\right)}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-3x+2+3x+6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+10}{\left(3x-2\right)\left(3x+2\right)}\)

27 tháng 11 2017

câu f ,g đâu

b) Ta có: \(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)

\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)-\left(x+1\right)^3=0\)

\(x^3-6x^2+12x-8+9x^2-1-\left(x^3+3x^2+3x+1\right)=0\)

\(x^3+3x^2+12x-9-x^3-3x^2-3x-1=0\)

\(9x-10=0\)

hay 9x=10

\(x=\frac{10}{9}\)

Vậy: \(x=\frac{10}{9}\)

c) \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{5}\)

\(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{5}=0\)

\(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{3\left(x+7\right)}{15}=0\)

\(3\left(2x-1\right)-5\left(x-2\right)-3\left(x+7\right)=0\)

\(6x-3-5x+10-3x-21=0\)

\(-2x-14=0\)

\(-2x=14\)

hay x=-7

Vậy: x=-7

d) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}=\frac{13x+4}{21}\)

\(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)

\(\frac{6\left(x-3\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)

\(6x-18+7x-35-13x-4=0\)

\(-21\ne0\)

Vậy: x∈∅

e) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)

\(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}-\frac{\left(x+10\right)\left(x-2\right)}{3}=0\)

\(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{3\left(x+4\right)\left(2-x\right)}{12}-\frac{4\left(x+10\right)\left(x-2\right)}{12}=0\)

\(x^2+14x+40-\left(3x+12\right)\left(2-x\right)-\left(4x+40\right)\left(x-2\right)=0\)

\(x^2+14x+40-\left(24-6x-3x^2\right)-\left(4x^2+32x-80\right)=0\)

\(x^2+14x+40-24+6x+3x^2-4x^2-32x+80=0\)

\(-12x+96=0\)

\(-12x=-96\)

hay x=8

Vậy: x=8

1 tháng 3 2020

b) \(\frac{4}{x+2}+\frac{3}{x-2}+\frac{5x+2}{4-x^2}\left(x\ne\pm2\right)\)

\(=\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{5x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{4x-8+3x+6-5x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{2x}{\left(x-2\right)\left(x+2\right)}\)

2 tháng 3 2020

f) \(x^2+1-\frac{x^4-3x^2+2}{x^2-1}\)

\(=x^2+1-\frac{\left(x^2-2\right)\left(x^2-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=x^2+1-\frac{\left(x^2-2\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=x^2+1-\left(x^2-2\right)\)

\(=x^2+1-x^2+2\)

\(=3\)