\(x^2-3\left(m+1\right)x-m^2-15=0\)

tìm m để pt có 2 nghiệm pb thỏa mãn h...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2017

xét \(\Delta^'=9\left(m+1\right)^2+m^2+15>0\forall m\)nên phương trinh luôn có 2 nghiệm phân biệt 

\(\hept{\begin{cases}x_1+x_2=3\left(m+1\right)\\x_1x_2=-m^2-15\end{cases}}\)do đó ta có hệ \(+\hept{\begin{cases}x_1+x_2=3m+3\\2x_1-x_2=-12\end{cases}\Leftrightarrow}x_1=m-3\Rightarrow x_2=2m+6\)

do đó \(x_1x_2=-m^2-15\Leftrightarrow\left(2m+6\right)\left(m-3\right)=-m^2-15\)\(\Leftrightarrow3m^2=-12\left(vn\right)\)

3 tháng 6 2017

bạn tính \(\Delta\)rồi nó ra \(\left(3m+3\right)^2+4m^2+60>0\)với mọi \(m\)thuộc \(R\)

=> pt luôn có 2 nghiệm phân biệt

gọi \(x_1;x_2\)là hai nghiệm của pt, áp dụng viet:

\(S=x_1+x_2=\frac{-b}{a}=3\left(m+1\right)\)(1)

\(P=x_1.x_2=\frac{c}{a}=-m^2-15\)(2)

từ (1); (2) và pt bài toán cho ta có hệ 3 pt:

\(\hept{\begin{cases}x_1+x_2=3.\left(m+1\right)\\x_1.x_2=-m^2-15\\2.x_1-x_2=-12\end{cases}}\)

giải hệ 3 pt => m=....

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
NV
2 tháng 7 2020

\(\Delta=\left(2m+3\right)^2-4\left(m^2+2m+2\right)=4m+1\ge0\Rightarrow m\ge-\frac{1}{4}\)

\(\left(x_1+x_2\right)^2-4x_1x_2=x_1+x_2+x_1\)

\(\Leftrightarrow\left(2m+3\right)^2-4\left(m^2+2m+2\right)=2m+3+x_1\)

\(\Leftrightarrow4m+1=2m+3+x_1\)

\(\Rightarrow x_1=2m-2\Rightarrow x_2=2m+3-x_1=5\)

\(x_1x_2=m^2+2m+2\)

\(\Rightarrow5\left(2m-2\right)=m^2+2m+2\)

\(\Rightarrow m^2-8m+12=0\Rightarrow\left[{}\begin{matrix}m=6\\m=2\end{matrix}\right.\)

12 tháng 11 2019

ĐK để phuơng trình có 2 nghiệm: 

\(\Delta'\ge0\Leftrightarrow1^2-3+m\ge0\Leftrightarrow m\ge2\)(1)

Áp dụng định lí Viet ta có: \(x_1+x_2=2\)\(x_1.x_2=3-m\)

Vì \(x_2\) là nghiệm của pt nên: \(x^2_2-2x_2+3-m=0\)

<=> \(x^2_2-2x_2+4=m+1\)

Khi đó ta có: \(2\left(2-x_2\right)^3+\left(x_2^2-2x_2+4\right)x_2^2=16\)

<=> \(2\left(8-12x_2+6x_2^2-x_2^3\right)+\left(x_2^2-2x_2+4\right)x_2^2=16\)

<=> \(x_2\left(x_2^3-4x_2^2+16x_2-24\right)=0\)

<=> \(x_2\left(x_2-2\right)\left(x_2-2x_2+12\right)=0\)

<=> \(\orbr{\begin{cases}x_2=0\Rightarrow x_1=2\Rightarrow3-m=0\Rightarrow m=3\\x_2=2\Rightarrow x_1=0\Rightarrow3-m=0\Rightarrow m=3\end{cases}}\)( tm (1) )

Thử lại với m = 3 . Thỏa mãn.

Vậy:...

16 tháng 3 2019

Xét phương trình \(x^2-2\left(m+1\right)x+4m-3=0\) (1) là phương trình bậc hai một ẩn

Có \(\Delta'=m^2-2m+4>0\)nên phương trình (1) luôn có 2 nghiệm phân biệt \(x_1,x_2\)

Áp dụng ĐL Vi-et có: \(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=4m-3\end{cases}}\)

Ta có: \(2x_1+x_2=5\Leftrightarrow x_1=5-\left(x_1+x_2\right)\Rightarrow x_1=5-\left(2m+2\right)=3-2m\)

Giả sử: \(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=2m+2+\sqrt{m^2-2m+4}\)

Khi đó: \(2m+2+\sqrt{m^2-2m+4}=3-2m\)\(\Leftrightarrow\sqrt{m^2-2m+4}=1-4m\)

\(\Leftrightarrow\hept{\begin{cases}m\le\frac{1}{4}\\5m^2-2m-1=0\end{cases}}\Leftrightarrow m\le\frac{1}{4}\) và \(\orbr{\begin{cases}m=\frac{1+\sqrt{6}}{5}\left(l\right)\\m=\frac{1-\sqrt{6}}{5}\left(c\right)\end{cases}}\)

Giả sử \(x_1=\frac{-b'-\sqrt{\Delta'}}{a}=2m+2-\sqrt{m^2-2m+4}\)

Khi đó: \(\sqrt{m^2-2m+4}=4m-1\)(Giải tương tự)

Vậy \(m=\frac{1-\sqrt{6}}{5}\) thỏa mãn đề.

20 tháng 6 2021

Đề sai nhé , sửa \(\left(x_1-2\right)^2\)thành \(\left(x_1-1\right)^2\)nhé

Để PT \(x^2+5x+m-2=0\)có 2 nghiệm phân biệt \(x_1;x_2\)ta phải có :

\(\Delta=5^2-4\left(m-2\right)=33-4m>0\Leftrightarrow m< \frac{33}{4}\)(*)

Theo định lí Viet , ta có : \(\hept{\begin{cases}x_1+x_2=-5\\x_1x_2=m-2\end{cases}}\)

Để các nghiệm \(x_1;x_2\)thỏa mãn hệ thức đã cho thì các nghiệm đó phải khác 1 , khi đó đk là :

\(1^2+5.1+m-2\ne0\Leftrightarrow m\ne-4\)(**)

Ta có : \(\frac{1}{\left(x_1-1\right)^2}+\frac{1}{\left(x_2-1\right)^2}=1\)

\(\Leftrightarrow\left(x_2-1\right)^2+\left(x_1-1\right)^2=\left(x_1-1\right)^2\left(x_2-1\right)^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2\left(x_1+x_2\right)-2x_1x_2+2=\left[x_1x_2-\left(x_1+x_2\right)+1\right]^2\)

\(\Leftrightarrow37-2\left(m-2\right)=\left(m-2+5+1\right)^2\)

\(\Leftrightarrow41-2m=\left(m+4\right)^2\)

\(\Leftrightarrow m^2+10m-25=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=-5+5\sqrt{2}\\m=-5-5\sqrt{2}\end{cases}}\)( tm * và ** )

Vậy với \(m=-5\pm5\sqrt{2}\)thì tm đề bài

13 tháng 4 2018

\(x^2-mx-2=0\)

có \(\Delta=\left(-m\right)^2-4.\left(-2\right)=m^2+8>0\forall m\)

theo định lí vi - ét \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=-2\end{cases}}\)

theo bài ra \(2x_1-x^2_1-x_2^2+2x_2\)

\(=2\left(x_1+x_2\right)-\left(x^2_1+x_2^2\right)\)

\(=2\left(x_1+x_2\right)-\left[\left(x_1+x_2\right)^2-2x_1.x_2\right]\)

\(=2m-\left[m^2-2.\left(-2\right)\right]\)

\(=2m-\left(m^2+4\right)\)

\(=2m-m^2-4\)

\(=-\left(m^2-2m+4\right)\)

\(=-\left[\left(m-1\right)^2+3\right]\)

13 tháng 4 2018

Điều kiện để phương trình có 2 nghiệm phân biệt thì tự làm nha.

Áp dụng vi-et ta được

\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-2\end{cases}}\)

\(\Rightarrow P=2\left(x_1+x_2\right)-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\)

\(=2m-\left(m^2+4\right)=-3-\left(m-1\right)^2\le-3\)

16 tháng 5 2019

a, m=2

=> \(x^2-6x+8=0\)=> \(\orbr{\begin{cases}x=2\\x=4\end{cases}}\)

b, Để phương trình có 2 nghiệm

thì \(\Delta'=\left(m+1\right)^2-m^2-4=2m-3\ge0\)=> \(m\ge\frac{3}{2}\)

Theo viet ta có

\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+4\end{cases}}\)

Vì x2 là nghiệm của phương trình 

nên \(2\left(m+1\right)x_2=x^2_2+m^2+4\)

Khi đó 

\(\left(x_1^2+x^2_2\right)+m^2+4\le3m^2+16\)

=> \(\left(x_1+x_2\right)^2-2x_1x_2\le2m^2+12\)

=> \(4\left(m+1\right)^2-2\left(m^2+4\right)\le2m^2+12\)

=.>\(8m\le16\)=>\(m\le2\)

Vậy \(m\le2\)

11 tháng 3 2020

\(x^2-\left(2m-3\right)x+m\left(m-3\right)=0\)

=> \(x^2-\left(2m-3\right)x+m^2-3m=0\)

 Δ \(=\left(2m-3\right)^2-4\left(m^2-3m\right)\)

\(=4m^2-12m+9-4m^2+12m=9\)

căn  Δ =\(\pm\sqrt{9}=\pm3\)

ta có 2 nghiệm x1, x2

=>\(\orbr{\begin{cases}x1=\frac{2m-3-3}{2}\\x2=\frac{2m-3+3}{2}\end{cases}}\)

=>\(2x1-2x2=4\)

=>\(2m-6-\frac{2m}{2}=4\)

=>\(2m-6-m=4=>m=10\)

\(\Delta=\left(-\left(2m-3\right)\right)^2-4m\left(m-3\right)\)

= 4m2 - 12m + 9 - 4m2 + 12m

= 9

Suy ra pt trên có 2 no phân biệt

Theo vi-et: \(\hept{\begin{cases}x_1+x_2=2m-3\\x_1.x_2=m\left(m-3\right)\end{cases}}\)

Ta có: x1 + x2 = 2m - 3  hay x1 +  2x1 - 4 = 2m - 3

<=> 3x1 = 2m + 1 <=> x1 = \(\frac{2m+1}{3}\)=> x2 = \(\frac{4m-10}{3}\)

Ta lại có: x1.x2 = m(m - 3)

Hay \(\frac{2m+1}{3}.\frac{4m-10}{3}=m\left(m-3\right)\)

<=> (2m + 1)(4m - 10) = 9(m2 - 3m)

<=> 8m2 - 20m + 4m - 10 - 9m2 + 27m = 0

<=> m2 - 11m + 10 = 0

<=> (m - 10)(m - 1) = 0 <=> \(\orbr{\begin{cases}m=10\\m=1\end{cases}}\left(TM\right)\)

Vậy m = 10 hoặc m = 1 thì thỏa mãn đề bài