![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2.x^{2011}+2009=x^{2011}+x^{2011}+1+1+...+1\ge2011\sqrt[2011]{x^{4022}}=2011x^2\)
\(tt:2y^{2011}+2009\ge2011x^2;2z^{2011}+2009\ge2011z^2\)
\(\text{Cộng vế theo vế ta được:}6+6027\ge2011\left(x^2+y^2+z^2\right)\Rightarrow2011.3\ge2011M\Rightarrow M\le3\)
\(\Rightarrow M_{max}=3.\text{Dấu "=" xảy ra khi:}x=y=z=1\)
bài này dùng cauchy(chắc phải c/m)
có: x+y-2 căn xy = (cănx - căny)^2 lớn hơn hoặc = 0 =>x+y > hoặc = 2cănxy
2x^2011+2009 lớn hơn hoặc =2011x^2(mình lười rút gọn vế phải sr b)
tg tự(. . .) ta có 2011(x^2+y^2+z^2) nhỏ hơn hoặc =2(x^2011+y^2011+z^2011)+3x2009=6+6027=6033
=>x^2+y^2+z^2 nhỏ hơn hoặc = 3
max m là 3 khi x=y=z=3/3=1
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình nghĩ đề là tìm min chứ?
Ta có: \(\Delta=m^2+2m+49=\left(m+1\right)^2+48>0\left(\forall m\right)\) (*)
Từ (*) ta thấy phương trình trên có hai nghiệm phân biệt nên ta có thể giả sử:
\(\hept{\begin{cases}x_1=\frac{-\left(m-7\right)+\sqrt{m^2+2m+49}}{8}\\x_2=\frac{-\left(m-7\right)-\sqrt{m^2+2m+49}}{8}\end{cases}}\)
\(\Rightarrow F=\left|x_1-x_2\right|=\left|\frac{1}{4}\sqrt{m^2+2m+49}\right|=\frac{1}{4}\sqrt{\left(m+1\right)^2+48}\ge\frac{1}{4}\cdot\sqrt{48}=\sqrt{3}\)
Dấu '=' xảy ra khi m=-1
Vậy \(m=-1\) thì F đạt giá trị nhỏ nhất tại \(\sqrt{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tất cả 3 bài này đều chung một dạng, bậc tử lớn hơn bậc mẫu nên đều không tồn tại GTLN mà chỉ tồn tại GTNN. Cách tìm thường là chia tử cho mẫu rồi khéo léo thêm bớt để sử dụng BĐT Cô-si
a) \(P=\dfrac{x+4}{4\sqrt{x}}=\dfrac{\sqrt{x}}{4}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\dfrac{\sqrt{x}}{4}\dfrac{1}{\sqrt{x}}}=2.\dfrac{1}{2}=1\)
\(\Rightarrow P_{min}=1\) khi \(\dfrac{\sqrt{x}}{4}=\dfrac{1}{\sqrt{x}}\Leftrightarrow x=4\)
b) \(P=\dfrac{x+3}{2\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{2}+\dfrac{2}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{2}+\dfrac{2}{\sqrt{x}+1}-1\)
\(\Rightarrow P\ge2\sqrt{\dfrac{\left(\sqrt{x}+1\right)}{2}\dfrac{2}{\left(\sqrt{x}+1\right)}}-1=2-1=1\)
\(\Rightarrow P_{min}=1\) khi \(\dfrac{\sqrt{x}+1}{2}=\dfrac{2}{\sqrt{x}+1}\Leftrightarrow x=1\)
c)ĐKXĐ: \(x\ge0\Rightarrow\) \(P=\dfrac{x-4}{\sqrt{x}+1}=\sqrt{x}-1-\dfrac{3}{\sqrt{x}+1}\)
\(P_{min}\) khi \(\dfrac{3}{\sqrt{x}+1}\) đạt max \(\Rightarrow\sqrt{x}+1\) đạt min, mà \(\sqrt{x}+1\ge1\) \(\forall x\ge0\) , dấu "=" xảy ra khi \(x=0\)
\(\Rightarrow P_{min}=-4\) khi \(x=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2