Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta'=\left(m-1\right)^2-\left(m^2-3\right)=-2m+4\)
phương trình có hai nghiệm <=> \(\Delta'\ge0\Leftrightarrow-2m+4\ge0\Leftrightarrow m\le2\)(@@)
b) Gọi \(x_1;x_2\) là hai nghiệm của phương trình
áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1x_2=m^2-3\\x_1+x_2=2\left(m-1\right)\end{cases}}\)
Không mất tính tổng quát: g/s: \(x_1=3x_2\)
=> \(4x_2=2\left(m-1\right)\Leftrightarrow x_2=\frac{m-1}{2}\)
=> \(x_1=\frac{3\left(m-1\right)}{2}\)
mà \(x_1x_2=m^2-3\)
=> \(\frac{3}{4}\left(m-1\right)^2=m^2-3\)
<=> \(3\left(m^2-2m+1\right)=4m^2-12\)
<=> \(\orbr{\begin{cases}m=-3+2\sqrt{6}\\m=-3-2\sqrt{6}\end{cases}}\) thỏa mãn
Vậy ....
a, Với m=2
\(Pt\Leftrightarrow x^2-8x+9=0\Leftrightarrow\left(x-4\right)^2=7\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=\sqrt{7}\\x-4=-\sqrt{7}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{7}+4\\x=-\sqrt{7}+4\end{cases}}\)
Vậy pt có 2 nghiệm phân biệt \(\orbr{\begin{cases}x=\sqrt{7}+4\\x=-\sqrt{7}+4\end{cases}}\)
\(\Delta=\left(m+3\right)^2-4\left(m+2\right)=m^2+2m+1=\left(m+1\right)^2\ge0,\forall m\)
=> Phương trình có hai nghiệm:
\(\orbr{\begin{cases}x_1=\frac{m+3-\left(m+1\right)}{2}=1\\x_2=\frac{m+3+m+1}{2}=m+2\end{cases}}\)
+) TH1: \(x_1=2x_2\) khi đó: \(1=2m+4\Leftrightarrow m=-\frac{3}{2}\)
+) TH2: \(x_2=2x_1\)khi đó: m + 2 = 2 <=> m = 0
Vậy m = -3/2 hoặc m = 0.
cho đường tròn tâm O bán kính r,điểm A cố định nằm ngoài đường tròn.kẻ 2 tiếp tuyến AM,AN.Đường thẳng D đi qua A cắt đường tròn O tại B,C với AB<AC.Chứng minh 5 điểm A,M,N,O,I thuộc đường tròn
chỉ cần hình thui
\(x^2-\left(m+3\right)x+m+2=0\)
Xét \(\Delta=\left(m+3\right)^2-4\left(m+2\right)=m^2+6m+9-4m-8=\left(m-1\right)^2\ge0\)
Vậy phương trình luôn có nghiệm với mọi m
Gọi 2 nghiệm của phương trình lần lượt là x1;x2
Theo Viete ta dễ dàng có ngay:
\(x_1+x_2=m+3;x_1x_2=m+2\)
Không mất tính tổng quát giả sử rằng \(x_1=2x_2\)
Khi đó \(2x_2+x_2=m+3\Rightarrow x_2=\frac{m+3}{3};2x_2\cdot x_2=m+2\)
\(2x_2^2=m+2\Leftrightarrow2\left(\frac{m+3}{3}\right)^2=m+2\)
Giải được phương trình này là ra giá trị của m nhé !
a) PT có nghiệm kép nếu
\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)^2+m\left(m-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne1\\\left(m-1\right)\left(2m-1\right)=0\end{cases}\Leftrightarrow}m=\frac{1}{2}}\)
Vậy \(m=\frac{1}{2}\)thì pt có nghiệm kép
\(x_1=x_2=-\frac{b}{2a}=-\frac{2\left(m-1\right)}{2\left(m-1\right)}=-1\)
b) Để pt có nghiệm phân biệt đều âm thì
\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)\left(2m-1\right)>0\end{cases}}\)
\(\hept{\begin{cases}x_1\cdot x_2=-\frac{m}{m-1}>0\\x_1+x_2=\frac{2\left(m-1\right)}{m-1}< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}m>1\\m< \frac{1}{2}\end{cases}}\)và \(0< m< 1\)
Vậy 0<m<\(\frac{1}{2}\)
định gõ ấn f5 cái thì thấy bạn làm xong r :((
giải nhanh quá !