K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2017

mình chẳng hiểu gì cả X_X

16 tháng 9 2017

Chả hiểu đây là dạng toán gì

15 tháng 10 2016

Ta có \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)

Áp dụng bđt AM-GM ta có \(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)

Đặt \(t=x+y\)

Xét \(\frac{t^2}{t-2}\ge8\Leftrightarrow t^2\ge8t-16\Leftrightarrow t^2-8t+16\ge0\Leftrightarrow\left(t-4\right)^2\ge0\)luôn đúng

Vậy \(\frac{\left(x+y\right)^2}{x+y-2}\ge8\) hay \(P\ge8\).

18 tháng 2 2020

Sửa đề: \(\frac{2}{xy}+\frac{3}{x^2+y^2}\ge14\) với x, y > 0 và x  + y = 1.

\(VT-VP=\frac{\left(x-y\right)^2\left[2\left(x-y\right)^2+xy\right]}{xy\left(x^2+y^2\right)}\ge0\)

Tổng quát hóa: Cho \(xy\left(2a-b\right)>0\) và x + y = t (t là hằng số)

Chứng minh: \(\frac{a}{xy}+\frac{b}{x^2+y^2}\ge\frac{4a+2b}{t^2}\)  

Xét hiệu: \(VT-VP=\frac{\left(x-y\right)^2\left[a\left(x-y\right)^2+\left(2a-b\right)xy\right]}{xy\left(x+y\right)^2\left(x^2+y^2\right)}\)

P/s: Bài toán trên là trường hợp đặt biệt của bài bên dưới khi a= 2;b=3;t=1

20 tháng 4 2018

Cái  thứ nhất nhân cả tử với mẫu với x 

Cái  thứ hai nhân cả tử với mẫu với y 

Cái  thứ ba nhân cả tử với mẫu với z

Áp dụng cô si ở mẫu

dấu = xảy ra khi x=y=z=1( không TM) => Không xảy ra dấu =

=> đpcm

p/s: Mình định trình bày đầy đủ cho bạn nhưng đánh gần xong thì tự nhiên máy tính thoát ra. giờ thì hướng dẫn thôi. Sorry

6 tháng 2 2020

Chứng minh BĐT \(\ge2\)chứ?

Ta có: \(\frac{x^2}{\sqrt{1-x^2}}=\frac{x^3}{x\sqrt{1-x^2}}\ge\frac{x^3}{\frac{x^2+1-x^2}{2}}=2x^3\)

Tương tự ta có: \(\frac{y^2}{\sqrt{1-y^2}}\ge2y^3\)

Và: \(\frac{z^2}{\sqrt{1-z^2}}\ge2z^3\)

Cộng theo 3 vế BĐT trên ta có:

\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2x^3+2y^3+2z^3=2\left(x^3+y^2+z^2\right)=2\left(đpcm\right)\)

9 tháng 6 2016

Đặt A=.....
Dễ dàng biến đổi \(A=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
Có :\(\frac{x^2}{y-1}+4\left(y-1\right)\ge4x\)và \(\frac{y^2}{x-1}+4\left(x-1\right)\ge4y\)
Khi đó :\(A\ge4x+4y-4\left(x-1\right)-4\left(y-1\right)=8\)
Dấu = xảy ra \(\Leftrightarrow x=y=2\)
Phần dấu = tớ làm hơi tắt. bạn nên tb rõ nhé 

9 tháng 6 2016

\(A=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^3-x^2+y^3-y^2}{\left(x-1\right)\left(y-1\right)}=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}.\)

Áp dụng BĐT Côsy Schwarz \(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}\ge\frac{\left(a_1+a_2\right)^2}{b_1+b_2}\)(Bạn có thể chứng minh được theo Bunhiacopxki - hoặc xem về BĐT Côsy Schwarz trên mạng)

cho các số dương a1=x;a2=y;b2=x-1;b2=y-1. Ta có:

\(A=\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}=\frac{\left(x+y\right)^2-4+4}{x+y-2}=x+y+2+\frac{4}{x+y-2}=\)

\(=4+\left\{\left(x+y-2\right)+\frac{4}{x+y-2}\right\}\)

Vì x+y-2 >0. Áp dụng BĐT Cô sy cho 2 số \(\left(x+y-2\right);\frac{4}{x+y-2}\)

\(A\ge4+\left\{\left(x+y-2\right)+\frac{4}{x+y-2}\right\}\ge4+2\sqrt{\left(x+y-2\right)\cdot\frac{4}{x+y-2}}=4+2\sqrt{4}=8\)

Vậy A>=8. Dấu bằng xảy ra khi x=y=2 (ĐPCM).

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y