Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em ơi phần a có ( x+1)2 luôn luôn lớn hơn hoặc = 1 nên(x+1)2+5 luôn bằng 5 hoặc lớn hơn 5 . Ta không thể tìm được Max của A, nhỏ nhất khi x=-1
* Xem lại đề bài nhé!
B) Không thể tìm được gtln hay gtnn vì chẳng có tính chất nào với câu này cả em nhé
c) Để N lớn nhất thì (x-2)2+4 phải nhỏ nhất. Dễ thấy (x-2)^2-4 lên hơn hoặc bằng 4( bằng 4 khi x= -2) nên Min N= 2
phần c mình ghi min sửa lại cho mình là MAX. Hihi ẩu quá
Đặt:
\(\frac{x}{3}=\frac{y}{2}=k\)
\(\Rightarrow x=k.3\)
\(\Rightarrow y=k.2\)
Thế vào \(6xy=1\), ta có:
\(6.\left(k.3\right).\left(k.2\right)=1\)
\(6.k^2.6=1\)
\(6.k^2=\frac{1}{6}\)
\(k^2=\frac{1}{36}\)
\(\Rightarrow k=\frac{1}{6}\) hoặc \(-\frac{1}{6}\)
Rồi giờ tìm x ; y bạn từ làm nhá
\(\frac{x}{3}=\frac{y}{2}\)
=> \(\frac{x^2}{3^2}=\frac{y^2}{2^2}=\frac{xy}{3.2}\)
=> \(\frac{x^2}{9}=\frac{y^2}{4}=\frac{6xy}{36}=\frac{1}{36}\)
=> x2 = 1.9 : 36 = \(\frac{1}{4}\) => \(x=\frac{1}{2}\) hoặc \(x=-\frac{1}{2}\)
A=\(\left[\frac{x\left(x-y\right)}{y\left(x+y\right)}+\frac{\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}\right]:\left[\frac{y^2}{x\left(x-y\right)\left(x+y\right)}+\frac{1}{x+y}\right]\frac{ }{ }\)
=\(\left[\frac{x^2\left(x-y\right)+y\left(x-y\right)\left(x+y\right)}{xy\left(x+y\right)}\right]:\left[\frac{y^2+x\left(x-y\right)}{x\left(x-y\right)\left(x+y\right)}\right]\)=\(\frac{\left(x-y\right)\left(x^2+y^2+xy\right)}{xy\left(x+y\right)}.\frac{x\left(x-y\right)\left(x+y\right)}{y^2+x\left(x-y\right)}\)
=\(\frac{\left(x-y\right)^2\left(x^2+y^2+xy\right)}{y\left(x^2+y^2-xy\right)}\)=\(\frac{\left(x-y\right)^2\left(x^2+xy+\frac{y^2}{4}+\frac{3y^2}{4}\right)}{y\left(x^2-xy+\frac{y^2}{4}+\frac{3y^2}{4}\right)}\)=\(\frac{\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]}{y.\left[\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]}\)
Ta nhận thấy các số trong ngoặc đều dương.
=> Để A>0 thì y>0
Vậy để A>0 thì y>0 và với mọi x
CMR : \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le2;\left(0\le x\le y\le z\le1\right)\)
Ta có : \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{xy+1}+\frac{y}{xy+1}+\frac{z}{xy+1}=\frac{x+y+z}{xy+1}\left(1\right)\)
Ta lại có : \(0\le x\le1;0\le y\le1\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\ge0\)
\(\Leftrightarrow xy-x-y+1\ge0\)
\(\Leftrightarrow xy+1\ge x+y\left(2\right)\)
Thay (2) và (1) được : \(\frac{x+y+z}{xy+1}\le\frac{xy+1+2}{xy+1}\le\frac{2\left(xy+1\right)}{xy+1}=2\)
Vì \(0\le x\le y\le z\le1\Rightarrow x-1\le0;y-1\le0\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy+1\ge x+y\Rightarrow\frac{1}{xy+1}\le\frac{1}{x+y}\Rightarrow\frac{z}{xy+1}\le\frac{z}{x+y}\left(1\right)\)
Cmtt: \(\hept{\begin{cases}\frac{x}{yz+1}\le\frac{x}{y+z}\left(2\right)\\\frac{y}{xz+1}\le\frac{y}{x+z}\left(3\right)\end{cases}}\)
Từ (1), (2), (3) ta có:
\(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\left(4\right)\)
Mà \(\frac{x}{y+z}\le\frac{x+z}{x+y+z}\Rightarrow\frac{x}{y+z}\le\frac{2x}{x+y+z}\)
Cmtt: \(\hept{\begin{cases}\frac{y}{x+z}\le\frac{2y}{x+y+z}\\\frac{z}{x+y}\le\frac{2z}{x+y+z}\end{cases}}\)
\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\le\frac{2\left(x+y+z\right)}{x+y+z}\le2\left(5\right)\)
Từ (4), (5) => đpcm
Bài 1:
Vì vế trái dương \(\Rightarrow\) x \(\ge\) 0
Xét 2 TH:
TH1: 2x + 1 + 1 - x = 5x với 0 \(\le\) x \(\le\) 1
\(\Rightarrow\) x + 2 = 5x
\(\Rightarrow\) 4x = 2
\(\Rightarrow\) x = \(\frac{1}{2}\) (TM)
TH2: 2x + 1 + x - 1 = 5x với x > 1
\(\Rightarrow\) 3x = 5x
\(\Rightarrow\) 2x = 0
\(\Rightarrow\) x = 0 (KTM)
Vậy x = \(\frac{1}{2}\)
Chúc bn học tốt! (Ko chắc lắm đâu)