Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
Áp dụng bđt AM-GM ta có \(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)
Đặt \(t=x+y\)
Xét \(\frac{t^2}{t-2}\ge8\Leftrightarrow t^2\ge8t-16\Leftrightarrow t^2-8t+16\ge0\Leftrightarrow\left(t-4\right)^2\ge0\)luôn đúng
Vậy \(\frac{\left(x+y\right)^2}{x+y-2}\ge8\) hay \(P\ge8\).
Đặt A=.....
Dễ dàng biến đổi \(A=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
Có :\(\frac{x^2}{y-1}+4\left(y-1\right)\ge4x\)và \(\frac{y^2}{x-1}+4\left(x-1\right)\ge4y\)
Khi đó :\(A\ge4x+4y-4\left(x-1\right)-4\left(y-1\right)=8\)
Dấu = xảy ra \(\Leftrightarrow x=y=2\)
Phần dấu = tớ làm hơi tắt. bạn nên tb rõ nhé
\(A=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^3-x^2+y^3-y^2}{\left(x-1\right)\left(y-1\right)}=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}.\)
Áp dụng BĐT Côsy Schwarz \(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}\ge\frac{\left(a_1+a_2\right)^2}{b_1+b_2}\)(Bạn có thể chứng minh được theo Bunhiacopxki - hoặc xem về BĐT Côsy Schwarz trên mạng)
cho các số dương a1=x;a2=y;b2=x-1;b2=y-1. Ta có:
\(A=\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}=\frac{\left(x+y\right)^2-4+4}{x+y-2}=x+y+2+\frac{4}{x+y-2}=\)
\(=4+\left\{\left(x+y-2\right)+\frac{4}{x+y-2}\right\}\)
Vì x+y-2 >0. Áp dụng BĐT Cô sy cho 2 số \(\left(x+y-2\right);\frac{4}{x+y-2}\)
\(A\ge4+\left\{\left(x+y-2\right)+\frac{4}{x+y-2}\right\}\ge4+2\sqrt{\left(x+y-2\right)\cdot\frac{4}{x+y-2}}=4+2\sqrt{4}=8\)
Vậy A>=8. Dấu bằng xảy ra khi x=y=2 (ĐPCM).
2, rút gọn B=x^2/(y-1)+y^2/(x-1)
AM-GM : x^2/(y-1)+4(y-1) >/ 4x ; y^2/(x-1)+4(x-1) >/ 4y
=> B >/ 4x-4(y-1)+4y-4(x-1)=4x-4y+4+4y-4x+4=8
minB=8
Câu 1:
Áp dụng BĐT AM-GM ta có: \(x+1\ge2\sqrt{x}\)
\(\Rightarrow x+1+x+1\ge x+2\sqrt{x}+1\)
\(\Rightarrow2x+2\ge\left(\sqrt{x}+1\right)^2\left(1\right)\)
Tương tự cũng có: \(2y+2\ge\left(\sqrt{y}+1\right)^2\left(2\right)\)
Nhân theo vế của \(\left(1\right);\left(2\right)\) ta có:
\(\left(2x+2\right)\left(2y+2\right)\ge\left(\sqrt{x}+1\right)^2\left(\sqrt{y}+1\right)^2\ge16\)
\(\Rightarrow4\left(x+1\right)\left(y+1\right)\ge16\Rightarrow\left(x+1\right)\left(y+1\right)\ge4\)
Lại áp dụng BĐT AM-GM ta có:
\(\left(x+1\right)+\left(y+1\right)\ge2\sqrt{\left(x+1\right)\left(y+1\right)}\ge4\)
\(\Rightarrow x+y\ge2\). Giờ thì áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(A=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)
Đẳng thức xảy ra khi \(x=y=1\)
Câu hỏi của Đỗ Tuấn Linh - Toán lớp 9 - Học toán với OnlineMath
\(\frac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\ge8\)
\(\Leftrightarrow\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\ge8\)
\(\Leftrightarrow\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\)
By Titu's Lemma we have:
\(LHS\ge\frac{\left(x+y\right)^2}{x+y-2}\) and we need prove that:
\(\left(x+y\right)^2\ge8\left(x+y\right)-16\)
But the last inequalities is true. ( QED )