Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
\(P=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-2}{-1}=2\)
1: Δ=(-2)^2-4*m
=4-4m
m<1
=>-4m>-4
=>-4m+4>0
=>Phương trình luôn có hai nghiệm phân biệt khi m<1
Ptr có: `\Delta' = b'^2-ac=(-1)^2-(-4)=5 > 0`
`=>` Ptr có `2` nghiệm pb
`=>` Áp dụng Vi-ét: `{(x_1+x_2=[-b]/a=2),(x_1.x_2=c/a=-4):}`
Có: `T=x_1(x_1-2x_2)+x_2(x_2-2x_1)`
`=>T=x_1 ^2 - 2x_1.x_2+x_2 ^2 - 2x_1.x_2`
`=>T=(x_1+x_2)^2-6x_1.x_2`
`=>T=2^2-6(-4)=28`
chỉ viec tinh denta va tui chac chan la denta k con thm so m va >0 nen la dpcm
\(x^2 - 4x - 3 = 0\) có 1.(-3) < 0
=> Phương trình có hai nghiệm phân biệt
Áp dụng hệ thức Vi-et có \(x_1 + x_2 = 4\) \(; x_1x_2 = -3\)
Mà \(A = \dfrac{x_1^2}{x_2} + \dfrac{x_2^2}{x_1}\)
\(= \dfrac{x_1^3 + x_2^3}{x_1x_2}\)
\(= \dfrac{(x_1 + x_2)(x_1^2 - x_1x_2 + x_2^2)}{x_1x_2}\)
\(=\dfrac{(x_1+x_2)[(x_1 +x_2)^2 - 3x_1x_2]}{x_1x_2}\)
\(=\dfrac{4.[4^2 - 3.(-3)]}{-3}\)
\(= \dfrac{-100}{3}\)
Phương trình : \(x^2-2mx+2m-3=0\left(1\right)\)
Xét : \(\Delta=m^2-\left(2m-3\right)=m^2-2m+3=m^2-2m+1+2=\left(m-1\right)^2+2>0,\forall m\)
=> Phương trình 1 luôn có 2 ngiệm phân biệt x1, x2
\(A=x_1^2+x_2^2=x_1^2+2x_1x_2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2\)
Áp dụng định lí Vi ét cho phương trình (1) Ta có:
x1+x2=2m; x1.x2=2m-3
Khi đó: \(A=\left(2m\right)^2-2.\left(2m-3\right)=\left(2m\right)^2-2.2m+1+5=\left(2m-1\right)^2+5\ge5\)
'=" xảy ra <=> 2m-1=0 <=> m=1/2
Vậy : min A=5 khi và chỉ khi m=1/2
Ptr có: `\Delta=b^2-4ac=(-1)^2-4.1.(-1)=5 > 0`
`=>` Ptr có `2` `n_o` pb
Áp dụng Vi-ét: `{(x_1+x_2=[-b]/a=1),(x_1.x_2=c/a=-1):}`
Ta có:
`P=(x_1-x_2)^2`
`P=x_1 ^2-2x_1.x_2+x_2 ^2`
`P=(x_1+x_2)^2-4x_1.x_2`
`P=1^2-4.(-1)=5`
Cứu tinh đến nhanh quá.