Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a Tách \(M=2+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\le2+1=3\)
Dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2
b,:\(N\ge\frac{\left(1+\frac{2015}{x}+1+\frac{2015}{y}\right)^2}{2}=\frac{\left(2+2015\left(\frac{1}{x}+\frac{1}{y}\right)\right)^2}{2}\)
áp dunngj svac =>\(N\ge\frac{\left(2+2015\left(\frac{\left(1+1\right)^2}{x+y}\right)\right)^2}{2}=\frac{\left(2+\frac{2015.4}{2015}\right)^2}{2}=18\)
dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
Câu 2-Ta có x^2+y^2=5
(x+y)^2-2xy=5
Đặt x+y=S. xy=P
S^2-2P=5
P=(S^2-5)/2
Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2
Rùi tự tính
Câu1
Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)
=> P<=4/3(a+b+c)=4/3
Vậy Max p =4/3 khi a=4b=16c
Có : (a-b)^2 >= 0
<=> a^2-2ab+b^2 >= 0
<=> a^2+b^2 >= 2ab
<=> a^2+2ab+b^2 >= 4ab
<=> (a+b)^2 >= 4ab (1) <=> 2ab <= (a+b)^2/2 (2)
Với a,b > 0 thì chia 2 vế của (1) cho (a+b).ab , ta được :
a+b/ab >= 4/a+b
<=> 1/a + 1/b >= 4/a+b (*)
Áp dụng bđt (*) và bđt (2) thì :
P = 1/2xy + 1/x^2+4y^2 = 1/4xy + (1/4xy + 1/x^2+4y^2) >= 1/2.x.2y + 4/x^2+4xy+y^2
>= 1 : (x+2y)^2/2 + 4/(x+2y)^2 = 1 : 1/2 +4/1 = 6
Dấu "='' xảy ra <=> x=2y và x+2y=1
<=> x=0,5 ; y=0,25
Vậy GTNN của P = 6 <=> x=0,5 và y=0,25
k mk nha
mk mới làm cách khác bạn
P=\(\frac{1}{x^2+4y^2}\)+\(\frac{1}{4xy}\)+\(\frac{1}{4xy}\)
áp dụng BĐT phụ 1/a +1/b >= 4/a+b
=> \(\frac{1}{x^2+4y^2}\)+\(\frac{1}{4xy}\)>= \(\frac{4}{\left(x+2y\right)^2}\)=4 (1)
áp dụng BĐT phụ 1/ab >= 4/(a+b)^2
+) 1/4xy = 1/2.1/2xy
1/2xy>= 4/(x+2y)^2 = 4
=> 1/4xy >= 1/2 . 4 = 2 (2)
cộng (1) và (2) => P>=6
\(A=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x+y\right)^2+4xy}{\left(x+y\right)^2}=\frac{2.2012^2+4xy}{2012^2}\)
\(\le\frac{2.2012^2+4.\frac{\left(x+y\right)^2}{4}}{2012^2}=\frac{2.2012^2+2012^2}{2012^2}=\frac{3.2012^2}{2012^2}=3\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=1006\)
anh hùng giải thích cho em cái chỗ \(\frac{4.\left(x+y\right)^2}{4}\) với