Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy
a)Ta thấy: \(\left|x-5\right|\ge0\)
\(\Rightarrow-\left|x-5\right|\le0\)
\(\Rightarrow1000-\left|x-5\right|\le1000\)
\(\Rightarrow A\le1000\)
Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)
Vậy \(Max_A=1000\) khi \(x=5\)
b)Ta thấy: \(\left|y-3\right|\ge0\)
\(\Rightarrow\left|y-3\right|+50\ge50\)
\(\Rightarrow B\ge50\)
Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy \(Min_B=50\) khi \(y=3\)
c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)
\(\Rightarrow C\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
dễ
a) Ta có : | x | \(\ge\)0 nên | x | + 7 \(\ge\)7
hay P \(\ge\)7 với \(\forall\)x \(\in\)Z
Vậy GTNN của P là 7 khi x = 0
\(P_{\text{ min}}=7\Leftrightarrow x=0\)
b) Ta có : | x + 1 | \(\ge\)0 nên | x - 1 | + 5 \(\ge\)5
hay Q \(\ge\)5 với \(\forall\)x \(\in\)Z
\(Q_{\text{ min}}=5\Leftrightarrow x=1\)
a) Vi |x| luon > hoac = 0
P nho nhat <=> |x| nho nhat => x=0
Min P=|x|+7=7
Vay Min P = 7 <=> x=0
b) Vi |x| luon > hoac = 0 nen Q nho nhat <=>|x-1| dat gia tri nho nhat khi x = 1
Min Q = |x-1|+5=5
Vay Min Q=5 <=> x=1
tk nghen
Z=|3x-3|+|x-4|-|3|
=3|x-1|+|x-4|-3
Ta có \(\left|x-1\right|\ge x-1\)
\(2\left|x-1\right|\ge0\)
\(\left|x-4\right|\ge4-x\)
\(\Rightarrow Z\ge x-1+0+4-x-3=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\x-1=0\\x-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=1\\x\le4\end{cases}\Leftrightarrow}x=1}\)
Đáp án cần chọn là: A
Ta có: P=|x|+20
Vì |x|≥0 với mọi x∈Z nên |x|+20≥20với mọi x∈Z hay P≥20 với mọi x∈Z
Dấu bằng xảy ra khi x=0.
Vậy giá trị nhỏ nhất của P bằng 20.
Đáp án cần chọn là: A
Ta có: P=|x|+10
Vì |x|≥0 với mọi x∈Z nên |x|+10≥10 với mọi x∈Z hay P≥10 với mọi x∈Z
Dấu bằng xảy ra khi x=0
Vậy giá trị nhỏ nhất của P bằng 10.
a: \(A=1000-\left|x+5\right|\le1000\forall x\)
Dấu '=' xảy ra khi x=-5
b: \(\left|x-3\right|+50\ge50\forall x\)
Dấu '=' xảy ra khi x=3
Lời giải:
Ta có: $|x|\geq 0$ với mọi $x$ nguyên
$\Rightarrow P=|x|+7\geq 7$
Vậy GTNN của $P$ là $7$. Giá trị này đạt tại $x=0$