\(\frac{x}{x+y+z}\)+\(\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2020

ta có *x/x+y+z+t<x/x+y+z<x/x+y

và *y/x+y+z+t<y/x+y+t<y/x+y

*z/x+y+z+t<z/y+z+t<z/z+t

*t/x+y+z+t<t/x+z+t<t/z+t

=> cộng các vế cho nhau, ta có:

(x/x+y+z+t)+(y/x+y+z+t)+(z/x+y+z+t)+(t/x+y+z+t)<M<(x/x+y)+(y/x+y)+(z/z+t)+(t/z+t)

hay x+y+z+t/x+y+z+t<m<(x+y/x+y)+(z+t/z+t)

=>1<M<2 => m ko có giá trị là số tự nhiên

CHÚC BẠN HỌC TỐT!!!

17 tháng 3 2017

Ta có

\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\)

\(\frac{y}{x+y+t+z}< \frac{y}{x+y+t}< \frac{y}{x+y}\)

\(\frac{z}{y+z+t+x}< \frac{z}{y+z+t}< \frac{z}{z+t}\)

\(\frac{t}{z+t+x+y}< \frac{t}{z+t+x}< \frac{t}{z+x}\)

công lại ta dc

1<M<2

vậy M k \(\in\)N

19 tháng 2 2021

Với x,y,t,z > 0, ta có : \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\left(1\right)\)

\(\frac{y}{x+y+t}>\frac{y}{x+z+y+t}\left(2\right)\)

\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\left(3\right)\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\left(4\right)\)
Từ (1);(2);(3);(4) => M > \(\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1\left(a\right)\)

Với x,y,z,t >0 , ta có : \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\left(5\right)\)

\(\frac{y}{x+y+t}< \frac{y+z}{x+z+y+t}\left(6\right)\)
\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\left(7\right)\)

\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\left(8\right)\)

Từ (5);(6);(7);(8) 

=> M < \(\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\left(b\right)\)

Từ (a);(b) => 1<M<2=> M không phải số nguyên (đpcm )

20 tháng 2 2021

câu này khó ngen

+) TH1: Nếu x + y + t + z ≠ 0

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

xy+z+t=yx+z+t=zx+y+t=tx+y+z=x+y+z+ty+z+t+x+z+t+x+y+t+x+y+z=13xy+z+t=yx+z+t=zx+y+t=tx+y+z=x+y+z+ty+z+t+x+z+t+x+y+t+x+y+z=13

=> 3x = y + z + t => 4x = x + y + z + t (1)

3y = x + z + t 4y = x + y + z + t (2)

3z = x + y + t 4z = x + y + z + t (3)

3t = x + y + z 4t = x + y + z + t (4)

Từ (1)(2)(3)(4) => x = y = z = t

⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=1+1+1+1=4⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=1+1+1+1=4

+) TH2: Nếu x + y + z + t = 0

=> x + y = -(z + t)

y + z = -(x + t)

t + z = -(x + y)

t + x = -(y + z)

⇒x+yz+t=y+zt+x=z+tx+y=t+xy+z=−1⇒x+yz+t=y+zt+x=z+tx+y=t+xy+z=−1

⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=(−1)+(−1)+(−1)+(−1)=−4

Mk nhĩ bn chép sai đề. Phải là \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}\)chứ!!! Sao lại là + ???!!!!