Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2(x-y)(x2+xy+y2)- 3(x2+2xy+y2) = 4(x2+xy+y2) - 3x2-6xy-3y2 = 4x2+4xy+4y2 - 3x2-6xy-3y2 = x2-2xy+y2 = (x-y)2
A = [x3 + y3 - (x+y)3] + 27x6y6
= [x3 + y3 - x3 - y3 - 3xy(x + y)]3 + 27x6y6
= (-3x2y2)3 + 27x6y6
= 0
P/s : Bạn Lê Quang Phúc làm đúng rồi nhá :vv Tiếc là cái dòng đầu tiên thiếu mũ 3 ở chỗ [x3 + y3-(x+y)3]3
\(A=\left[x^3+y^3-\left(x+y\right)^3\right]^3+27x^6y^6\)
\(A=\left[x^3+y^3-x^3-y^3-3xy\left(x+y\right)\right]^3+27x^6y^6\)
\(A=\left(-3x^2y^2\right)^3+27x^6y^6\)
\(A=-27x^6y^6+27x^6y^6\)
\(A=0\)
\(N=x^3+y^3+9xy=\left(x+y\right)^3-3xy\left(x+y\right)+9xy=3^3-3xy.3+9xy=27-9xy+9xy=27\)
\(N=x^3+y^3+9xy\)
\(N=\left(x+y\right)^3-3xy\left(x-y\right)+9xy\)
\(N=\left(3^3\right)-3xy.3+9xy\)
\(N=27-9xy+9xy\)
\(N=27\)
Vậy N = 27
\(A=x^3-12xy-y^3\)
\(A=\left(x-y\right)\left(x^2+xy+y^2\right)-12xy\)
Ta có: \(x-y=4\)
\(\Rightarrow A=4.\left(x^2+xy+y^2\right)-12xy\)
\(A=4x^2+4xy+4y^2-12xy\)
\(A=4x^2+4y^2-8xy\)
\(A=4.\left(x^2-2xy+y^2\right)\)
\(A=4.\left(x-y\right)^2\)
\(\Rightarrow A=4.4^2\)
\(A=64\)
Vậy \(A=64\) tại \(x-y=4\)
Tham khảo nhé~