Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
t lắm tắt luôn nhé có nhiều câu quá
áp dụng bdt cô si ta có
a) \(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{1.xyz}{xyz}}=4\)
vậy Min của T là 4 dấu = xảy ra khi x=y=z=1
b)
áp dụng BDT cosi ta có
\(x+y+Z\ge3\sqrt[3]{xyz}\)
\(\frac{3}{xyz}+3xyz\ge2\sqrt{\frac{3.3xyz}{xyz}}=6\)
+ vế với vế ta được
\(T+3xyz\ge3\sqrt[3]{xyz}+6\)
\(T\ge3\sqrt[3]{xyz}+6-3xyz\)
có \(xyz\le\frac{\left(x+y+Z\right)^2}{27}\Rightarrow-xyz\ge-\frac{\left(x+y+z\right)^2}{27}\) cùng dấu > thay vào được
\(T\ge3\sqrt[3]{xyz}+6-3\frac{\left(x+y+z\right)^3}{27}\)
Có \(x^2+1\ge2x\)
\(y^2+1\ge2y\)
\(z^2+1\ge2z\) (cosy)
+ vế với vế ta được
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
\(3\ge\left(x+y+z\right)\Rightarrow-\left(x+y+z\right)\ge-3\) cùng dấu > ta thay được
\(\Rightarrow T\ge3\sqrt[3]{xyz}+6-3\frac{\left(3\right)^3}{27}\)
\(\Rightarrow T\ge6\) dấu = xảy ra khi x=y=z=1
3) dự đoán của chúa pain x=y=z = \(\frac{1}{\sqrt{3}}\)
thử thay vào
\(\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\frac{1}{\sqrt{3}^3}}\)
số xấu lắm m tự làm đi tương tự câu 1) 2)
1) dự đoán của chúa Pain x=y=z=1
áp dụng BDT cô si ta có
\(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{xyz}{xyz}}=4.\)
Vậy Min là 4 dấu = xảy ra khi x=y=z=1
2 chia cả tử cả mẫu cho \(x^2+y^2+z^2=3\) ta được
\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{3}{xyz}\)
thay số ta được
\(\left(x+y+z+\frac{x}{yz}+\frac{z}{xy}+\frac{y}{zx}\right)\)
áp dụng Cô si ta được
\(VT\ge6\sqrt[6]{\frac{x^2y^2z^2}{y^2z^2x^2}}=6\)
vậy Min là 6 dấu = xảy ra khi x=y=z=1
3) TƯỢNG TỰ cậu 2
chia xyz cho 2 vế
\(x^2+y^2+z^2=1\)
ta được
\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{1}{xyz}\)
thay số
\(\left(x+y+z\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\)
áp dụng BDT cô si ta được
\(\left(\frac{x}{\frac{1}{\sqrt{3}^2}}+\frac{y}{\frac{1}{\sqrt{3}^2}}+\frac{x}{\frac{1}{\sqrt{3}^2}}\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\ge....\)
tự làm
Phải là x, y dương bn nhé
Ta có BĐT \(x^3+y^3\ge\frac{\left(x+y\right)^3}{4}\)
\(\Leftrightarrow4\left(x^3+y^3\right)\ge\left(x+y\right)^3\)
\(\Leftrightarrow4x^3+4y^3-x^3-y^3-3x^2y-3xy^2\ge0\)
\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)
Đẳng thức xảy ra \(\Leftrightarrow x=y\)
Do đó \(x^3+y^3\ge\frac{\left(x+y\right)^3}{4}\ge\frac{1}{4}\)
Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\x+y=1\end{cases}}\) \(\Leftrightarrow x=y=\frac{1}{2}\)
Ta có \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\\ \Leftrightarrow x^3+y^3=1-3xy\)
Lại có \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
Do đó \(x^3+y^3\ge1-3.\frac{1}{4}=\frac{1}{4}\)
Dấu ''='' xảy ra \(\Leftrightarrow\)x=y=1/2( bạn chú ý x,y dương nhé)
\(z=\frac{P-x-y}{2}\)
\(\Rightarrow x^2+y^2+\frac{\left(P-x-y\right)^2}{4}=3\)
\(\Leftrightarrow5y^2+\left(2x-2P\right)y+5x^2-2Px+P^2-12=0\)
\(\Rightarrow\Delta_y=\left(x-P\right)^2-5.\left(5x^2-2Px+P^2-12\right)\ge0\)
\(\Leftrightarrow36x^2-12Px+P^2+5P^2-90\le0\)
\(\Leftrightarrow5P^2-90\le-\left(6x-P\right)^2\le0\)
\(\Leftrightarrow-3\sqrt{2}\le P\le3\sqrt{2}\)
\(A=\left(x-y\right)\left(x^2+xy+y^2\right)=2\left(x^2-2xy+y^2\right)+6xy=2\left(x-y\right)^2+6x\left(x-2\right)\)
\(=6\left(x^2-2x\right)+8=6\left(x-1\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=-1\end{cases}}\)