Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-y=2\Rightarrow x=2+y\)
a) Thay x = 2+y vào P:
\(P=\left(2+y\right)y+4\)
\(=2y+y^2+4\)
\(=2\left(y^2+y+4\right)\)
\(=2\left(y^2+\dfrac{1}{2}y+\dfrac{1}{2}y+4\right)\)
\(=2\left[\left(y+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\right]\)
\(=2\left(y+\dfrac{1}{2}\right)^2+\dfrac{15}{2}\)
Vì \(2\left(y+\dfrac{1}{2}\right)^2\ge0\Rightarrow2\left(y+\dfrac{1}{2}\right)^2+\dfrac{15}{2}\ge\dfrac{15}{2}\)
Dấu "=" xảy ra khi \(\left(y+\dfrac{1}{2}\right)^2=0\)
\(\Rightarrow y=\dfrac{-1}{2}\)
Khi đó: \(x=\dfrac{-1}{2}+2=\dfrac{3}{2}\)
Vậy ...
Ta có \(x-y=2\Rightarrow x=y+2\)
a,Thay x=y+2 vào P ta được:
\(P=y\left(y+2\right)+4=y^2+2y+4=\left(y+1\right)^2+3\ge3\)
Vậy GTNN của P = 3 khi y=-1 và x=1
b,Cũng thay như thế ta được
\(Q=\left(y+2\right)^2+y^2-y\left(y+2\right)=y^2+2y+4\)
Vậy GTNN của Q=3 khi y=-1 và x=1
Lời giải:
Thay \(x=y+2\) ta có:
a)
\(P=xy+4=(y+2)y+4=y^2+2y+4=(y+1)^2+3\)
\(\geq 0+3=3\)
Vậy GTNN của $P$ là $3$ khi \(y+1=0\Leftrightarrow y=-1; x=1\)
b)
\(Q=x^2+y^2-xy=(y+2)^2+y^2-(y+2)y\)
\(=y^2+2y+4=(y+1)^2+3\geq 0+3=3\)
Vậy GTNN của $Q$ là $3$ khi \(y+1=0\Leftrightarrow y=-1; x=1\)
Ta có: C=\(4x-4+2x^2y^2-2xy+yx^2-yx-x^2y-3x\)
(=)C=\(x+2x^xy^2-3xy-4\)
=> bậc của đa thức C là 3
\(C=4\left(x-1\right)+2x\left(xy^2-y\right)+y\left(x^2-x\right)-x\left(xy+3\right)\)
\(C=4x-4+\left(2xxy^2\right)-2xy+yx^2-yx-xxy-3x\)
\(C=\left(4x-3x\right)-4+2x^2y^2-\left(2xy+yx\right)+yx^2-x^2y\)
\(C=x-4-2x^2y^2-3xy+\left(yx^2-x^2y\right)\)
\(C=x-4-2x^2y^2-3xy\)
Vậy C có bậc là 4
Vì x-y=2 => y=x-2
=> A=x(x-2)+4=x2-2x+4=x2-2x+1+3=(x-1)2+3>=3
B=x2-2xy+y2+xy=(x-y)2+xy=4+xy>=3