Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(x^2+2xy+7\left(x+y\right)+7y^2+10=0\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+6y^2+10=0\) ( * )
\(S=x+y+1\Rightarrow x+y=S-1\)
( * ) \(\left(S-1\right)^2+7.\left(S-1\right)+6y^2+10=0\)
\(\Rightarrow S^2+5S+4=-6y^2\le0\) với mọi y \(\Rightarrow S^2+5S+4\le0\)
=> (S + 4)(S + 1) ≤ 0 => S + 4 và S + 1 trái dấu
Giải 2 trường hợp => -4 ≤ S ≤ -1
=> GTNN của S bằng -4 khi y = 0 và x = -5
GTLN của S bằng -1 khi y = 0 và x = -2
Ta có : \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{y}{5}\)
Quy đòng : \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y+z}{8+12+15}=\frac{35}{35}=1\)
\(\Leftrightarrow\begin{cases}\frac{x}{8}=1\Rightarrow x=1.8=8\\\frac{y}{12}=1\Rightarrow y=1.12=12\\\frac{z}{15}=1\Rightarrow z=1.15=15\end{cases}\)
Vậy x = 8 ; y = 12 ; z = 15
Đặt A=\(\frac{42-x}{x-15}\)
\(A=\frac{57-x-15}{x-15}=\frac{57}{x-15}-1\)
A nhỏ nhất khi \(\frac{57}{x-15}\) nhỏ nhất
\(\frac{57}{x-15}\) nhỏ nhất khi x-15 lớn nhất
=> x-15=57
=> x=72
a:
\(\Leftrightarrow x^2-25⋮x^2-4\)
\(\Leftrightarrow x^2-4\inƯ\left(21\right)\)
\(\Leftrightarrow x^2-4\in\left\{-3;-1;1;3;7;21\right\}\)
hay \(x\in\left\{1;-1;5;-5\right\}\)
b:
1: Để A là số nguyên thì \(x^2-x⋮x+1\)
\(\Leftrightarrow x^2+x-2x-2+2⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1;2;-2\right\}\)
hay \(x\in\left\{0;-2;1;-3\right\}\)
2: Để B là số nguyên thì \(-x\left(x-2\right)-5⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{3;1;7;-3\right\}\)
a.
\(\frac{2}{-7}< 0\)
\(0< 0,25\)
\(\Rightarrow\frac{2}{-7}< 0,25\)
\(\Rightarrow y< x\)
b.
\(-\frac{3}{101}< 0\)
\(0< \frac{1}{97}\)
\(\Rightarrow\frac{-3}{101}< \frac{1}{97}\)
\(\Rightarrow x< y\)
c.
\(\frac{4}{-3}< 0\)
\(0< \frac{-1}{-103}\)
\(\Rightarrow\frac{4}{-3}< \frac{-1}{-103}\)
\(\Rightarrow x< y\)
Bạn tự vẽ hình nhé
a) Xét tam giác ADE và tam giác ACE có:
AD = AC ( gt )
ED = EC ( E là trung điểm DC )
AE là cạnh chung
=> Tam giác ADE = tam giác ACE ( c,c,c )
b) Vì tam giác ADE = tam giác ACE ( c/m trên )
=> Góc AED = góc AEC ( 2 góc tương ứng )
Xét tam giác DIE và tam giác CIE có:
ED = EC ( E là trung điểm DC )
Góc AED = góc AEC ( c/m trên )
EI là cạnh chung
=> Tam giác DIE = tam giác CIE ( c.g.c )
=> DI = CI ( 2 cạnh tương ứng )
Ta có:
\(\begin{cases}\left|2x-1\right|\ge0\\\left(x+y+10\right)^{2016}\ge0\end{cases}\)
\(\Rightarrow\left|2x-1\right|+\left(x+y+10\right)^{2016}\ge0\) (1)
Mà theo đề thì ta có : \(\left|2x-1\right|+\left(x+y+10\right)^{2016}\le0\) (2)
Từ (1) và (2) \(\Rightarrow\left|2x-1\right|+\left(x+y+10\right)^{2016}=0\)
\(\Rightarrow\begin{cases}\left|2x-1\right|=0\\\left(x+y+10\right)^{2016}=0\end{cases}\)
Ta có: \(\left|2x-1\right|=0\Rightarrow2x-1=0\Rightarrow2x=1\Rightarrow x=0,5\)
Thay x = 1/2 vào \(\left(x+y+10\right)^{2016}=0\), ta đc:
\(\left(0,5+y+10\right)^{2016}=0\Rightarrow10,5+y=0\Rightarrow y=-10,5\)
Vậy x = 0,5 ; y = -10,5
Ta có :
\(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow2x^2+2y^2\ge x^2+y^2+2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2=2^2=4\)
\(\Leftrightarrow x^2+y^2\ge2\)
Có: \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=2\)
\(Min=2\) khi \(x=y=1\)