Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\left\{{}\begin{matrix}A=4\\A=-4\end{matrix}\right.\)
Vậy biểu thức A luôn có giá trị nguyên (đpcm).
Chúc bạn học tốt!
\(\frac{x}{z+t+y}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{z+t+y+z+t+x+t+x+y+x+y+z}=\frac{x+y+z+t}{3.\left(x+y+t+z\right)}=\frac{1}{3}\)
Vì x, y, z, t thuộc N* nên :
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\left(1\right)\)
\(\frac{y}{x+y+z+t}< \frac{y}{z+y+t}< \frac{y}{x+y}\left(2\right)\)
\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z}{z+t}\left(3\right)\)
\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{x+y}\left(4\right)\)
Từ (1) (2) (3) và (4)
\(\Rightarrow\frac{x+y+z+t}{x+y+z+t}< M< \frac{x+y}{x+y}+\frac{z+t}{z+t}\)
\(\Rightarrow1< M< 2\)
\(\Rightarrow M\) không phải là số tự nhiên
Cái chỗ (4) là \(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{z+t}\)nha mình nhầm
Ta có
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\)
\(\frac{y}{x+y+t+z}< \frac{y}{x+y+t}< \frac{y}{x+y}\)
\(\frac{z}{y+z+t+x}< \frac{z}{y+z+t}< \frac{z}{z+t}\)
\(\frac{t}{z+t+x+y}< \frac{t}{z+t+x}< \frac{t}{z+x}\)
công lại ta dc
1<M<2
vậy M k \(\in\)N
Bạn tham khảo tại đây:
Câu hỏi của I lay my love on you - Toán lớp 7 - Học toán với OnlineMath
Ta có
\(\frac{x+y}{x+y+z}>\frac{x+y}{x+y+z+t};\frac{y+z}{y+z+t}>\frac{y+z}{x+y+z+t};\frac{z+t}{z+t+x}>\frac{z+t}{x+y+z+t};\frac{t+x}{t+x+y}>\frac{t+x}{x+y+z+t}\)
\(\Rightarrow LHS>2\) ( điều phải chứng minh )