Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2 :
ab+ bc + ca = 2015
=> 2015 +a^2 = a^2 + ab + bc + ca
=> 2015 + a^2 = a(a+b ) + c( a + b ) = ( a + c )( a + b)
Tương tự : 2015+b^2 = ( b + c )(b +a )
2015 + c^2 = ( c + a )(c + b ) thay vào ta có :
( 2015 + a^2)(2015 + b^2 ) (2015 +c^2) = (a + c )(a+b)(b+c)(b+a)(c+a)(c+b) = [(a+c)(a+b)(b+c) ]^2 là số chính phương
Câu 1 ) :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{2015}-\frac{1}{z}=\frac{z-2015}{2015z}\)
=> \(\frac{x+y}{xy}=\frac{z-2015}{2015z}\)
=> \(2015z\left(x+y\right)=\left(z-2015\right)xy\)
=> \(2015z\left(2015-z\right)-\left(z-2015\right)xy\) = 0
=> \(\left(2015-z\right)\left(2015z-xy\right)\)= 0
=> \(\left(2015-z\right)\left(2015\left(2015-x-y\right)-xy\right)=0\)
=> \(\left(2015-z\right)\left(2015^2-2015x-2015y-xy\right)=0\)
=> \(\left(2015-z\right)\left(2015-x\right)\left(2015-y\right)=0\)
=> 2015 - z = 0 hoặc 2015 -x = 0 hoặc 2015 - y = 0
=> z = 2015 hoặc x= 2015 hoặc y = 2015
Vậy trong ba số có ít nhất 1 số bằng 2015
a. Tớ chưa giải ra được, chờ xíu tớ suy nghĩ :>
b. Ta có \(15x^2-11x-14=\left(5x-7\right)\left(3x+2\right)\)
mà \(15x^2-11x-14⋮7\Rightarrow3x+2⋮7\) ( đpcm )
a. Ta có \(x+2014y+y+2014x=2015\left(x+y\right)⋮2015\)
mà \(\left(x+2014y\right)⋮2015\) \(\Rightarrow\left(y+2014x\right)⋮2015\) ( đpcm )