\(x+y+z=(x-y)(y-z)(z-x)=2019\)

Tính: P

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

Đợi tí mình làm cho

8 tháng 8 2019

\(P=\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)

\(=\left(x-z\right)\left(x^2-2xy+y^2-xy+y^2+zx-yz+y^2-2yz+z^2\right)-\left(x-z\right)^3\)

\(=\left(x-z\right)\left(x^2-2xy+y^2-xy+y^2+zx-yz+y^2-2yz+z^2-x^2+2xz-z^2\right)\)

\(=\left(x-z\right)\left(3y^3-3xy-3yz+3xz\right)\)

\(=\left(x-z\right)\left[3y\left(y-z\right)-3x\left(y-z\right)\right]\)

\(=\left(x-z\right)\left(y-z\right)\left(3y-3x\right)\)

\(=3\left(x-z\right)\left(y-z\right)\left(y-x\right)\)

\(=3\left(z-x\right)\left(y-z\right)\left(x-y\right)\)

\(=3.2019\)

\(=6057\)

Thiếu chứng minh điều kiện bằng j bạn ơi

16 tháng 8 2019

ban ghi ro de bai duoc ko ? mik ko hieu de bai

18 tháng 8 2019

a) Từ đề bài có: \(x\left(x-1\right)\le0\Rightarrow x^2\le x\)

Tương tự hai BĐT còn lại và cộng theo vế suy ra:

\(M=x+y+z-3\ge x^2+y^2+z^2-3=-2\)

Đẳng thức xảy ra khi (x;y;z) = (0;0;1) và các hoán vị của nó

Is it true?

18 tháng 8 2019

\(4\le\sqrt{x}+\sqrt{y}+\sqrt{xy}+1\le\sqrt{2\left(x+y\right)}+\frac{x+y}{2}+1\)

\(\Leftrightarrow\)\(8\le x+y+2\sqrt{x+y}\sqrt{2}+2=\left(\sqrt{x+y}+\sqrt{2}\right)^2\)

\(\Leftrightarrow\)\(\sqrt{x+y}+\sqrt{2}\ge\sqrt{8}\)

\(\Leftrightarrow\)\(x+y\ge\left(\sqrt{8}-\sqrt{2}\right)^2=2\)

\(\Rightarrow\)\(P=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)

Dấu "=" xảy ra khi \(x=y=1\)

11 tháng 2 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{z}{\left(x+y+z\right).z}-\frac{x+y+z}{z.\left(x+y+z\right)}=\frac{-x-y}{z.\left(x+y+z\right)}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{x+y}{-z.\left(x+y+z\right)}\)

TH1: x+y=0

=> x=-y => P=0

TH2: xy=-z.(x+y+z)

\(\Leftrightarrow xy=-xz-zy-z^2\Leftrightarrow xy+xz+zy+z^2=0\Leftrightarrow x.\left(y+z\right)+z.\left(y+z\right)=0\)

\(\Leftrightarrow\left(x+z\right).\left(y+z\right)=0\Leftrightarrow\orbr{\begin{cases}x=-z\\y=-z\end{cases}\Rightarrow P=0}\)

\(\left(x^4-2x^2+1\right)+\left(y^4-2y^2+1\right)+\left(z^4-2z^2+1\right)=0\)

\(\Leftrightarrow\)\(\left(x^2-1\right)^2+\left(y^2-1\right)^2+\left(z^2-1\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-1\right)\left(x+1\right)=0\\\left(y-1\right)\left(y+1\right)=0\\\left(z-1\right)\left(z+1\right)=0\end{cases}}\)\(\Rightarrow\)\(x,y,z\in\left\{1;-1\right\}\)

Mà \(\hept{\begin{cases}x^{2022}\ge0\forall x\\y^{2020}\ge0\forall y\\z^{2018}\ge0\forall z\end{cases}}\) nên P nhận giá trị không đổi khi \(x,y,z\in\left\{1;-1\right\}\)

\(\Rightarrow\)\(P=1+1+1=3\)

20 tháng 5 2019

Ta có \(\left(x+1\right)\left(x-3\right)\le0\)=> \(x^2\le2x+3\)

Tương tự \(y^2\le2y+3\)

                \(z^2\le2z+3\)

=> \(x^2+y^2+z^2\le2\left(x+y+z\right)+9=11\)

Dấu bằng xảy ra khi x=y=-1,z=3 và các hoán vị