K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

Vì x+y+z=0 nên có ít nhất 2 số cùng dấu. Giả sử đó là x và y thì xy>0.

Ta cần chứng minh \(x^2+y^4+z^6\le2\) ( fix đề )

\(x^2+y^4+z^6\le x^2+y^2+z^2=\left(x+y\right)^2-2xy+z^2=2z^2-2xy\)

mà \(xy>0\Rightarrow2z^2-2xy\le2z^2\le2\)

Dấu = xảy ra khi \(\hept{\begin{cases}z^2=1\\xy=0\end{cases}}\)( + các hoán vị) hay (x,y,z) ~(0;1;-1) và các hoán vị 

4 tháng 9 2017

Bài này không có'' z ''vậy giải ra kiểu gì được bạn ?

5 tháng 9 2017

mik nhầm

19 tháng 11 2015

tick mình xong mình giải cho

22 tháng 6 2016

đề lại thiếu rồi bạn ơi Cm cái j

23 tháng 6 2016

lớn hơn hoặc bằng ba căn ba nhé bạn. sorry nha, minh quên mất

21 tháng 8 2016

\(\frac{x}{x+2}+\frac{y}{y+2}=2-2\left(\frac{1}{x+2}+\frac{1}{y+2}\right)\le2-2.\frac{4}{x+2+y+2}=2-\frac{8}{4-z}\)

Cần CM: \(2-\frac{8}{4-z}+\frac{z}{z+8}\le\frac{1}{3}\)

\(\Leftrightarrow\frac{8\left(z-2\right)^2}{3\left(4-z\right)\left(z+8\right)}\ge0\)

bđt trên đúng do \(4-z=\left(x+2\right)+\left(y+2\right)>0\)

22 tháng 8 2016

Dòng kế cuối sửa lại thành \(\frac{8\left(z+2\right)^2}{3\left(4-z\right)\left(z+8\right)}\ge0\) nhé.

21 tháng 3 2022

từ đề bài ta có bất đẳng thức cần chứng minh tương đương: 

\(3+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{9}{4}\)

<=>\(\dfrac{3}{4}+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

ta có \(\dfrac{3}{4}+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{3}{4}+\dfrac{z+y}{4x}+\dfrac{x+z}{4y}+\dfrac{x+y}{4z}=\dfrac{3}{4}+\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{4}=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(đpcm\right)\)Dấu "=" xảy ra khi x=y=z=\(\dfrac{1}{3}\)